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Concept of rounding

* It is to reduce the digits in a number while trying to keep its
value almost same

* Rounding off numbers is a mathematical technique of
adjusting the number’s digits to make the number easier to
use during calculations.

* Numbers are rounded off to a particular degree of accuracy
to make calculations simpler and the results easier to
understand.



Types of rounding off

* Rounding to whole number/nearest unit
" Example: 15.3 =15, 15.5=9 16

* Rounding to decimal places

* Rounding to 1 dp / nearest tenth
e 274.55 =§»-274.6,274.95 = 275.0

* Rounding to 2 dp/ nearest hundredth
* 5.99735 =P 6.00, 3.245 =324

* Rounding to nearest thousand
e 289,523 =P 290 thousand

* Rounding to nearest million
e 8500000 =P 8 million



Scientific notation

* Scientific notation is a form of presenting very large numbers or very
small numbers in a simpler form.

* Scientific notation is a way to express numbers as the product of two
numbers: a coefficient and the number 10 raised to a power

* working in Scientific Notation enables us to work effectively all while
avoiding careless mistakes with decimals.

* the scientific notation helps us to represent the numbers which are
very huge or very tiny in a form of multiplication of single-digit
numbers and 10 raised to the power of the respective exponent.

* Scientific notation is based on power of 10



Scientific Notation Rules

To determine the power or exponent of 10, we must follow the rule
listed below:

* The base should be always 10

* The exponent must be a non-zero integer, that means it can be either
positive or negative

* The absolute value of the coefficient is greater than or equal to 1 but
it should be less than 10

* Coefficients can be positive or negative numbers including whole and
decimal numbers

* The mantissa carries the rest of the significant digits of the number



Positive and Negative Exponent

* When the scientific notation of any large numbers is expressed, then
we use positive exponents for base 10. For example:
20000 = 2 x 10%, where 4 is the positive exponent.

* When the scientific notation of any small numbers is expressed, then
we use negative exponents for base 10. For example:
0.0002 = 2 x 104, where -4 is the negative exponent.

* From the above, we can say that the number greater than 1 can be
written as the expression with positive exponent, whereas the
numbers less than 1 with negative exponent.



* If the given number is multiples of 10 then the decimal point has to
move to the left, and the power of 10 will be positive.
Example: 6000 = 6 x 103 is in scientific notation.

* If the given number is smaller than 1, then the decimal point has to
move to the right, so the power of 10 will be negative.

Example: 0.006 = 6 x 0.001 = 6 x 1073 is in scientific notation.

Scientific Notation Examples

The examples of scientific notation are:
490000000 = 4.9x108

1230000000 = 1.23%x10°

50500000 = 5.05 x 107

0.000000097 = 9.7 x 108

0.0000212 =2.12 x 10°°



Logarithm

e Logarithms were invented in the 17th century as a calculation tool by
Scottish mathematician John Napier (1550 to 1617), who coined the term
from the Greek words for ratio (logos) and number (arithmos).

* Logs (or) logarithms are nothing but another way of expressing exponents.

* Alogarithm is a mathematical operation that determines how many times
a certain number, called the base, is multiplied by itself to reach another
number.

* A logarithm is the power to which a number must be raised in order to get
some other number

* For example, logarithm of 100 with the base 10 is 2, because 10 raised to
the power of 2 is 100:
log,, 100 = 2

because
102 = 100

Again, .001=10" therefore log,, .001=-3



Mathematical Definition

* A logarithm is defined using an exponent:

log, a = x

The right side part of the arrow is read to be "Logarithm of a to the
base b is equal to x". Here, a and b are two positive real numbers. x is a

real number. a, which is inside the log is called the "argument". b,
which is at the bottom of the log is called the "base".

Argument

b*=a < log,a=x

/

base



What Are Natural and Common Logs?

Natural Logs

* Natural logs are nothing but logs with base e.

* That is, a natural log means log..

* But it is not usually represented as log,. Instead, it is represented as In.
* Natural Logarithms have their base as 2.7183

log, = In

Common Logs

* Common logs are nothing but logs with base 10

* That is, a common log means log,,

* But usually, writing log is sufficient instead of writing log,,

log,, = log



How to find logarithm

* The logarithm of any number consists of an integral part called
characteristic and a decimal part called mantissa.

* The characteristic of any number greater than 1 is positive and is
equal to the number of digits before the decimal point minus one.

* The characteristic of a number less than 1 is negative and is equal to
the number of consecutive zeros immediately following the decimal

pOint plus one. Number Characteristic
e.g., log,,69=1.8388 |176

2
69.58 1
3.47715 0
1
2

0.745
0.0745




* The mantissa of any
number is obtained from
log-tables

* Mantissa is independent
of the position of decimal
point in the number

* The mantissa of 235.9 is
the same as that of 2359
or of 0.2359 or even of
0.02358

LOGARITHMS, BASE 10
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Rules or properties of logarithm

* Product Rule: The logarithm of the product of two or more numbers
is the sum of their logarithms

log (axb) =loga +logh
log (100x10) = log 100 + log 10

* Quotient Rule: Logarithm of a quotient or ratio of two numbers is
equal to the difference between the logarithms of the individual
numbers

log (a/b) =loga+logh
log (100/10) = log 100 + log 10



* Power Rule: Logarithm of any number raised to certain power is
equal to the product of the product of the power and the logarithm
of the number

log (a®) = b(log a)
log (100%9) = 10(log 100)

* Change of Base Rule: The base of a logarithm can be changed using
this property.

log, a =log.a/log b
Or, log,a xlog_b =log_a



Anti-logarithm

* The anti-logarithm of a number is the inverse process of finding the
logarithms of the same number.

* If x is the logarithm of a number y with a given base b, then y is the
anti-logarithm of (antilog) of x to the base b.

If log, y = x, then y = antilog x
Log 100 = 2
Then, antilog 2= 100



* The process of
reading antilog table
is exactly similar to
that of log table.

* Example,
antilog 2.2425 =174.8
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Logarithmic or log scale

» way of displaying numerical data over a very wide range of values in a
compact way

* typically the largest numbers in the data are hundreds or even
thousands of times larger than the smallest numbers.

e Such a scale is nonlinear: the numbers 10 and 20, and 60 and 70, are
not the same distance apart on a log scale.



Uses of logarithmic scale

Richter magnitude scale and moment magnitude scale (MMS) for strength of earthquakes and
movement in the Earth

Sound level, with units decibel
Neper for amplitude, field and power quantities

Frequency level, with units cent, minor second, major second, and octave for the relative pitch of
notes in music

Logit for odds in statistics

Palermo Technical Impact Hazard Scale

Logarithmic timeline

Counting f-stops for ratios of photographic exposure
The rule of 'nines' used for rating low probabilities
Entropy in thermodynamics

Information in information theory

Particle size distribution curves of soil

pH for acidity



Linear vs. logarithmic scales.

* On a linear scale, a change between two values is perceived on the
basis of the difference between the values:

* e.g., a change from 1 to 2 would be perceived as the same increase as
from 4 to 5.

* On a logarithmic scale, a change between two values is perceived on
the basis of the ratio of the two values:

* e.g., a change from 1 to 2 would be perceived as the same increase as
a change from 4 to 8.
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Thematic maps

* A thematic map shows the spatial distribution of one or more specific
data themes for selected geographic areas.

* This usually involves the use of map symbols to visualize selected
properties of geographic features that are not naturally visible, such
as temperature, language, or population

 The map may be qualitative in nature (e.g., predominant farm types)
or quantitative (e.g., percentage population change).



Mapping methods

e Cartographers use many methods to create thematic maps.
* These are often referred to as different types of thematic maps,

* but it is more proper to call them types of thematic map layers or thematic
mapping techniques, as they can be combined with each other (forming a
bivariate or multivariate map) and with one or more reference map layers
in a single map.

Choropleth

Proportional or Graduated Symbol Map

Isoline and isopleth maps

Chorochromatic or area-class

Dot

Sphere

Flow



