- Concept of rounding, scientific notation, logarithm and ani-logarithm, natural and log scale
- Thematic map, mapping methods of thematic map

By
Sk Mithun, Ph.D.
Assistant Professor
Department of Geography
Haldia Government College

Concept of rounding

- It is to reduce the digits in a number while trying to keep its value almost same
- Rounding off numbers is a mathematical technique of adjusting the number's digits to make the number easier to use during calculations.
- Numbers are rounded off to a particular degree of accuracy to make calculations simpler and the results easier to understand.

Types of rounding off

- Rounding to whole number/nearest unit
 - Example: 15.3 → 15, 15.5 → 16
- Rounding to decimal places
 - Rounding to 1 dp / nearest tenth
 - 274.55 **2**74.6, 274.95 **2**75.0
 - Rounding to 2 dp/ nearest hundredth
 - 5.99735 **→** 6.00, 3.245 **→** 3.24
 - Rounding to nearest thousand
 - 289,523 **>** 290 thousand
 - Rounding to nearest million
 - 8500000 → 8 million

Scientific notation

- Scientific notation is a form of presenting very large numbers or very small numbers in a simpler form.
- Scientific notation is a way to express numbers as the product of two numbers: a coefficient and the number 10 raised to a power
- working in Scientific Notation enables us to work effectively all while avoiding careless mistakes with decimals.
- the scientific notation helps us to represent the numbers which are very huge or very tiny in a form of multiplication of single-digit numbers and 10 raised to the power of the respective exponent.
- Scientific notation is based on power of 10

Scientific Notation Rules

To determine the power or exponent of 10, we must follow the rule listed below:

- The base should be always 10
- The exponent must be a non-zero integer, that means it can be either positive or negative
- The absolute value of the coefficient is greater than or equal to 1 but it should be less than 10
- Coefficients can be positive or negative numbers including whole and decimal numbers
- The mantissa carries the rest of the significant digits of the number

Positive and Negative Exponent

- When the scientific notation of any large numbers is expressed, then we use positive exponents for base 10. For example: $20000 = 2 \times 10^4$, where 4 is the positive exponent.
- When the scientific notation of any small numbers is expressed, then we use negative exponents for base 10. For example: $0.0002 = 2 \times 10^{-4}$, where -4 is the negative exponent.
- From the above, we can say that the number greater than 1 can be written as the expression with positive exponent, whereas the numbers less than 1 with negative exponent.

• If the given number is multiples of 10 then the decimal point has to move to the left, and the power of 10 will be positive.

Example: $6000 = 6 \times 10^3$ is in scientific notation.

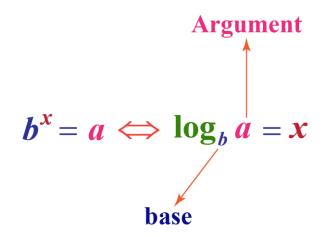
• If the given number is smaller than 1, then the decimal point has to move to the right, so the power of 10 will be negative.

Example: $0.006 = 6 \times 0.001 = 6 \times 10^{-3}$ is in scientific notation.

Scientific Notation Examples The examples of scientific notation are: $490000000 = 4.9 \times 10^{8}$ $1230000000 = 1.23 \times 10^{9}$ $50500000 = 5.05 \times 10^{7}$ $0.000000097 = 9.7 \times 10^{-8}$ $0.0000212 = 2.12 \times 10^{-5}$

Logarithm

- Logarithms were invented in the 17th century as a calculation tool by Scottish mathematician John Napier (1550 to 1617), who coined the term from the Greek words for ratio (logos) and number (arithmos).
- Logs (or) logarithms are nothing but another way of expressing exponents.
- A logarithm is a mathematical operation that determines how many times a certain number, called the base, is multiplied by itself to reach another number.
- A logarithm is the power to which a number must be raised in order to get some other number
- For example, logarithm of 100 with the base 10 is 2, because 10 raised to the power of 2 is 100:


```
log_{10} 100 = 2
because
10^2 = 100
Again, .001=10<sup>-3</sup>, therefore log_{10} .001=-3
```

Mathematical Definition

• A logarithm is defined using an exponent:

$$\log_b a = x$$

The right side part of the arrow is read to be "**Logarithm of a to the base b is equal to x**". Here, a and b are two positive real numbers. x is a real number. a, which is inside the log is called the "argument". b, which is at the bottom of the log is called the "base".

What Are Natural and Common Logs?

Natural Logs

- Natural logs are nothing but logs with base e.
- That is, a natural log means log_e.
- But it is not usually represented as \log_e . Instead, it is represented as \ln .
- Natural Logarithms have their base as 2.7183

$$log_e = ln$$

Common Logs

- Common logs are nothing but logs with base 10
- That is, a common log means log₁₀
- But usually, writing log is sufficient instead of writing log₁₀

$$\log_{10} = \log$$

How to find logarithm

- The logarithm of any number consists of an integral part called *characteristic* and a decimal part called *mantissa*.
- The *characteristic* of any number greater than 1 is **positive** and is equal to the number of digits before the decimal point minus one.

• The *characteristic* of a number less than 1 is **negative** and is equal to the number of consecutive zeros immediately following the decimal point plus one.

e.g., log₁₀ 69=1.8388

Number	Characteristic
176	2
69.58	1
3.47715	0
0.745	$\bar{1}$ (i. e., -1)
0.0745	2

- The mantissa of any number is obtained from log-tables
- Mantissa is independent of the position of decimal point in the number
- The mantissa of 235.9 is the same as that of 2359 or of 0.2359 or even of 0.02358

LOGARITHMS, BASE 10 $\log_{10} x$ or $\lg x$

x	o	I	2	3	4	5	6	7	8	9	I	2	3	4 <i>A</i>	5 A D 1	6 D	7	8	9
IO	.0000	0043	0086	0128	0170		•••				4	8	13	17	21	25	20	34	38
ΙI	.0414	0463	0.402	0531	0.560		0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	.0414	0453	0492	0531	0569		0645	0682	0719	0755			I 2 I I	1	19	-		31 30	35 33
12	.0792	0828	0864	0899	0934		1004			1106	4	7	ΙI	14	18	21	25	28	32
13	.1139	1173	1206	1239	1271		1004	1038	10/2	1100	_	7 7	10 10		17 16			27 26	-
14	.1461	1402	1522	1553	1584	1303 1614	1335	1		1430 1732	_	6	01	_	16	-		26	_
15	.1761			1847	l _	1903				2014	ľ	6	9	Ì	15		1	24	•
16	.2041	1 , ,		2122		2175			- ,	2279		5	8	1	14 13	16		22 21	
17 18	.2304			2380		2430				2529	2	5	7	1	12	15	17	20	22
19	.2553			2625 2856		2672 2900				2765 2989		5 4	7 6		I 2 I 1	14 13		19 18	
20	.3010	İ		3075		3118				3201	İ	4	6	1	II	•	_	17	
21	.3222			3284	3304	3324	3345	3365	3385	3404		4	6		10		1 -	16	-
22 23	.3424 .3617			3483 3674		3522				3598		4	6	Į.	IO		_	15	•
24	.3802			3856		3711 3892		1		3784 3962		4	5 5	7	9	I I	_	I4 I4	
25	-3979			4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10		14	
26	.4150	4166				4232		1 ' -	•	4298		3	5	6	8	10		13	_
27 28	.4314 .4472	4330 4487				4393 4548				4456	2		5	6	8	10		13	
29	.4624	4639				4698				4609 4757		3	5	6	8 7	9		I 2 I 2	•
30	.4771	4786	4800	4814	4829	4843	4857			4900	I	3	4	6	7	8	10		13
31	.4914	4928				4983		5011	5024	5038	I	-	4	6	7	8	1	11	_
32 33	.5051 .5185	5065 5198				5119				5172	I	_	4	5	7	8		10	
33 34	.5315	5328				5250 5378		5403	5289 5416		I ī	-	4 4	5 5	6	8	-	10 10	
35	.5441	5453	5465	5478	5400	5502	<i>EE</i> 1 <i>A</i>	5527	5539	6661	I	2		_	6		8		
36	.5563	5575				5623		5647			1		4	5 5	6	7		10 01	
37	.5682	5694	5705	5717	_	5740		5763			I		4	5	6	7	_	10	
38	.5798	5809	_	- •		5855	-	5877			ĭ		3	4	6	7	8	-	10
39	.5911	5922				5966	+,,,	5988			I	2	3	4	6	7	8	9	IO
40 41	.6021 .6128	6031 6138		-		6075		6096			Į		3	4	5	7	8	-	10
42	.6232	6243				6180 6284	_	6201 6304			I		3	4 4	5 5	6	7 7	8	9
43	.6335	6345		_		6385		6405			I		3	4	5	6	7	8	9
44	.6435	6444	6454	6464		6484		6503			I		3	4	5	6	7	8	9
45	.6532	6542				6580		6599	-	1	I		3	4	5	6	7	8	9
46 47	.6628 .6721	6637 (6730 (-		6675 6767		6693	•	'	I		3	4	5	5	6	7	8
48	.6812	6821				6857		6785 6875			I		3	4 4	5 4	5	6 6	7 7	8
49	.6902	6911			-	6946		6964			I		3	4	4	5	6	7	8

Rules or properties of logarithm

• **Product Rule**: The logarithm of the product of two or more numbers is the sum of their logarithms

$$log (a \times b) = log a + log b$$

 $log (100 \times 10) = log 100 + log 10$

 Quotient Rule: Logarithm of a quotient or ratio of two numbers is equal to the difference between the logarithms of the individual numbers

$$\log (a/b) = \log a + \log b$$

 $\log (100/10) = \log 100 + \log 10$

 Power Rule: Logarithm of any number raised to certain power is equal to the product of the product of the power and the logarithm of the number

$$\log (a^b) = b(\log a)$$

 $\log (100^{10}) = 10(\log 100)$

• Change of Base Rule: The base of a logarithm can be changed using this property.

$$\log_b a = \log_c a / \log_c b$$

Or, $\log_b a \times \log_c b = \log_c a$

Anti-logarithm

- The anti-logarithm of a number is the inverse process of finding the logarithms of the same number.
- If x is the logarithm of a number y with a given base b, then y is the anti-logarithm of (antilog) of x to the base b.

```
If log_b y = x, then y = antilog x

log 100 = 2

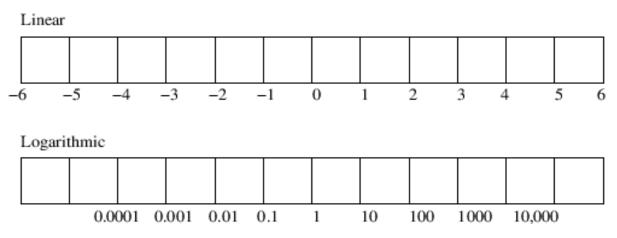
Then, antilog 2= 100
```

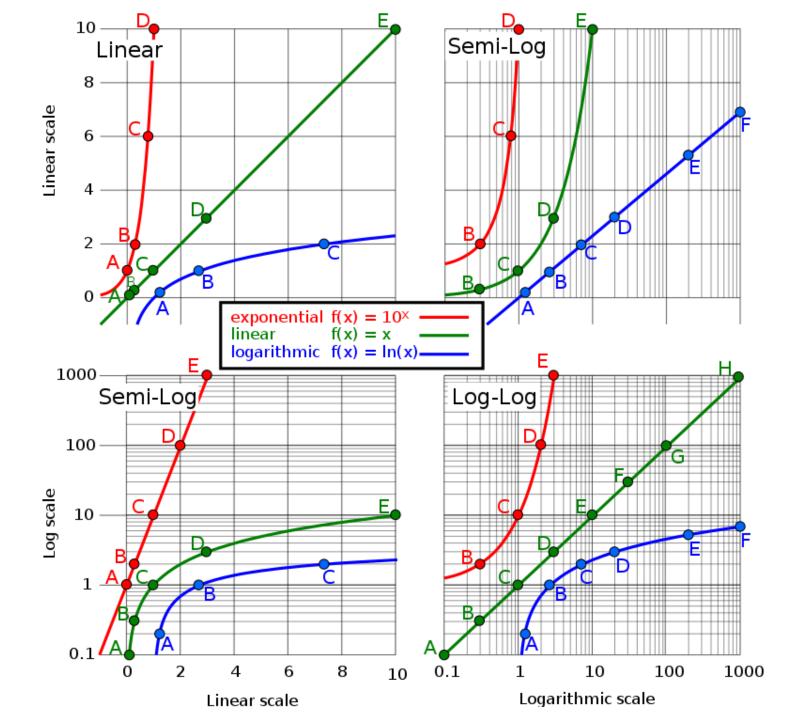
COMMON ANTILOGARITHM TABLE

- The process of reading antilog table is exactly similar to that of log table.
- Example, antilog 2.2425 = 174.8

	0	1	2	3	4	5	6	7	8	9	Mean difference								
			Arrest to	5000							1	2	3	4	5	6	7	8	5
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	-
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	3
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	3
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	
07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	
08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2 2 2 2	2	2 2 2 2 2	
09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2 2	2	
10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	
11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2 2	2 2	2	2	
12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1		2	2	2 2 3	
13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2		
14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	
15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	
16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2 2	2	2	3	
17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2 2	2	3	
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	
19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	
20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	
21	1622	1626	1629	1633	1637	1 1641	1644	1648	1652	1656	0	1	1	1 2	2	2	1 3	3	
22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	
23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	
24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	
25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	
26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	
27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	

Logarithmic or log scale


- way of displaying numerical data over a very wide range of values in a compact way
- typically the largest numbers in the data are hundreds or even thousands of times larger than the smallest numbers.
- Such a scale is **nonlinear**: the numbers 10 and 20, and 60 and 70, are not the same distance apart on a log scale.


Uses of logarithmic scale

- Richter magnitude scale and moment magnitude scale (MMS) for strength of earthquakes and movement in the Earth
- Sound level, with units decibel
- Neper for amplitude, field and power quantities
- Frequency level, with units cent, minor second, major second, and octave for the relative pitch of notes in music
- Logit for odds in statistics
- Palermo Technical Impact Hazard Scale
- Logarithmic timeline
- Counting f-stops for ratios of photographic exposure
- The rule of 'nines' used for rating low probabilities
- Entropy in thermodynamics
- Information in information theory
- Particle size distribution curves of soil
- pH for acidity

Linear vs. logarithmic scales.

- On a linear scale, a change between two values is perceived on the basis of the difference between the values:
- e.g., a change from 1 to 2 would be perceived as the same increase as from 4 to 5.
- On a logarithmic scale, a change between two values is perceived on the basis of the ratio of the two values:
- e.g., a change from 1 to 2 would be perceived as the same increase as a change from 4 to 8.

Thematic maps

- A thematic map shows the spatial distribution of one or more specific data themes for selected geographic areas.
- This usually involves the use of map symbols to visualize selected properties of geographic features that are not naturally visible, such as temperature, language, or population
- The map may be qualitative in nature (e.g., predominant farm types) or quantitative (e.g., percentage population change).

Mapping methods

- Cartographers use many methods to create thematic maps.
- These are often referred to as different types of thematic maps,
- but it is more proper to call them types of thematic map layers or thematic mapping techniques, as they can be combined with each other (forming a bivariate or multivariate map) and with one or more reference map layers in a single map.
 - Choropleth
 - Proportional or Graduated Symbol Map
 - Isoline and isopleth maps
 - Chorochromatic or area-class
 - Dot
 - Sphere
 - Flow