Design of Experiments

1 Factorial Experiments

Many experiments involve the study of the effects of two or more factors.
In general, factorial designs are most effcient in this type of experiment.
By a factorial design, we mean that in each complete trial or replication
of the experiment all possible combinations of the levels of the factors are
investigated. For example, if there are a levels of factor A and b levels of
factor B, each replicate contains all ab treatment combinations.

The effect of factor is defined to be the change in response produced by a
change in the level of the factor. This is called main effect because it refers

to the primary factors of the experiment. In follwing example, main effect of

factor A is
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Figure 5-1 A two-factor factorial experi-
ment, with the response (¥) shown at the
corners.

Figure 5-2 A two-factor factorial experi-
ment with interaction.




and main effect of factor B is

30452 20+40
- == = -

B 11

In many experiments, we see that the difference of response between the levels
of one factor is not the same at all levels of other factor. When this occurs,
there is a interaction between factors. In the above two factor experiment,

the effect of A at low levels of B is
50 — 20 =30
and effect of A at high level of B is
12 — 40 = —28.

The magnitude of the intercation is defined by the average difference between
these two effects
 —28-30

AB= ——=-29
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The Two-Factor Factorial Design

Suppose there are two treatments A and B. There are a levels of factor A
and b levels of factor B and these are arranged in a factorial design and each
of ab treatment combinations is replicated r times. We can use CRD or RBD
for factorial experiment.

If CRD is used then the observations y;;, from k" replicate of it" level of

factor A and j** level of factor B can be modeled as
Yijk = w+ 7+ B + (78)ij + €iji

fori=1,...,a,j=1,2,....,band k = 1,2,...,r. Here p is the general effect,
7; is the effect of it level of factor A ,B; is the effect of 4t level of factor B

and (703);; is the interaction effect between 7; and 3; and €;j, ~ N(0,02). We

Zﬂ' :Z/Bj :ZZ(T/B)U =0

The null hypothesis to be tested are

assume that

(a) equality of different levels of factor A

Hy:mm=m=...=17=0



against

Hi:1#0 for at least one ¢

(b) equality of different levels of factor B

Hy:B1=0o=...=3,=0
against
Hy:p3; #0 for at least one 7
and
(c)
Hy: (18)ij =0 for alli,j
against
Hy:(18)ij #0 for at least one pair i, j
Analysis
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1 b r
Yi-. = b Z Z Yijk
j=1k=1
1 a T
T
i=1 k=1
1 T
Yij = 7 > ik
k=1
1 a b r
Boo = pn 221D Yk
i=1 j=1 k=1

The total sum of squares can be written as

a
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that is
TSS =SSA+ SSB+ SS(AB) + SSE

Also. it can be shown that

b
E(MSA) = E 554 TZT
- a—1 —-1
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r > 2 (TB)}
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SSE 9
The ANOVA for two factor factorial experiment is
Source of Degrees
variation Sum of squares of freedom | Mean square Fy
A Treat- SSAZ%Z;IyE__—g% a—1 MSA = 554 ¥
ments a
b
B Treat | SSB = 3y - e b—1 MSB =558 | Msp
ments =
a b
Interactions | SS(AB) =13 3 yfj — m — | (a—1)(b—1) | MS(AB) Mﬁgg)
== SS(AB)
SSA—-SSB (a—1)(b—1)
Error SSE = TSS — SSA— SSB — | ab(r — 1) MSE = 327
SS(AB)
a b r
Total => > nyjk—% abr — 1
i=1j=1k=1

If RBD is used with r blocks then model will be

Yijk = o+ 7i + B + (T8)ij + 0k + €ijk

fori=1,...,a,7=1,2,...;band k= 1,2,...

,7. Here 0y, is the effect of k"

block and ) d; = 0. Other parameters are same as CRD model.
k




The ANOVA table will be

Source Degrees
of
variation| Sum of squares of freedom Mean square Fy
Blocks | SS(Blocks) = L 3 42, — Z—; r—1 M S(Blocks) =
k=1 sS(Blocks)

r—1
oL -1 |wsa=s
B |ssp=Lyal g b1 MSB - §55 e

j:
a b
AB | SS(AB) =LY Y uk - Y- | (a=1)(b-1) | MS(AB) _ | ustan)
i=1j=1 SS(AB)
SSA—-SSB (a—1)(b—1)
Error SSE =TSS — SSA—SSB — | (ab—1)(r—1) | MSE = (ab—SIS%
SS(AB)
a b r 2
Total TSS = 121 Py k21 yfjk — % abr — 1

2 2F Factorial design

Suppose we want to compare k factors each at two levels. The levels may be

quantitative such as two values of temparature, preasure or time. A complete

replicate of such design requires 2 x 2 x - - - x 2 = 2F observations and is called

2" factorial design. We will assume that RBD is used for the design and nor-

mality assumption of errors is sat

2.1 The 2?2 design

isfied.

Suppose there are two factors each run at two levels. This design is called 22

design. The levels of the factors may be called “low” and “high”. Consider




the following example

Factors Treatment Replicates  Total
A B Combinations T II 1II

- - Alow,Blow 28 25 27 80
+ — Ahigh,Blow 36 32 32 100
— 4+ Alow,Bhigh 18 19 23 60
+ + A high, Bhigh 31 30 29 90

Now, let us denote the high level of factor in treatment combination by the
corresponding lowecase of the letter and low level of factor by the absence of
the corresponding letter. Thus, a represents high level of A and low level of
B, b represents A at the low level and B at the high level and ab represents
both A and B at high level and (1) represents both factors at low level.

b =60 ab =90
High {18 + 19 + 23) {31+ 30 + 29)
(2 p::nunds)+ T 7 -
R
Eh
32
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£
Low [ : +
(Tpound) (1) _gp a =100
(28 + 25 + 27) (36 + 32 + 32)
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(15%) (25%)
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A

Figure 6-1 Treatment combinations in the 2 design.



Let the symbols [1], [a], [b], [ab] represent the total of all r replicates taken at

the treatment combinations.

The effect of A at low level of B is ([a] — [1])/r and effect of A at high level
of B is ([ab] — [b])/r. The main effect of A is obtained by averaging of these

two quantities that is the main effect of A is

A:;@wwww_m:f@rmmwmb

T 2r

Similarly, the effect of B at low level of A is ([b] — [1])/r and effect of B at
high level of A is ([ab] — [a])/r. Hence main effect of B is

B = o (lab] o] + ] — [1]) = 5 (fa] + [1]) (B] ~ [1)

The interaction effect is the average difference between effect of A at high

level of B and effect of A at low level of B that is

AB = - (fab] ~ 8] — [a] + [1)) = o (fa] — (1)) (] ~ 1)

Note that AB and BA are same.

To calculate the sum of squares we note that contrasts are used in estimating
A namely
Contrastg = (ab) — (b) + (a) — (1).

We can also see that
Contrastg = (ab) — (a) + (b) — (1)

and
Contrastap = (ab) — (a) — (b) + (1)

Furthurmore , these three contrasts are orthogonal.

In general, a contrast is a linear combination of the parameters of the form,

v
I'= Z Cifbi
i=1



v
where > ¢; = 0. To test
i=1
Hy:T=0

we use the statistic .
Z CiYi
i=1

nMSE Y ¢?
V i=1

v 2
(2 Ciy”)  SSc/1
nMSE i c? MSE
=1
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to =

We can also use

Fo=

We reject Ho is Fo > Fo1n—v. The sum of squares is

v 2
(550
SSc ==

v
ny. c
i=1

Using this formula we get the sum of squares of treatment combinations as

([ab] — ] + [a] — [1])°

SSA = P

ssp - (ol + == ()"

and )
ssap) — abl= 1+ [ 1)

4r

The total sum of squares is obtained as

2 2 r 2
TSS= > D vimw—
i=1 j=1 k=1
2 2 r
where y.. = 37 > > yijk. The total sum of squares has 4r — 1 degrees of
i=1j=1k=1
freedom. The error sum of squares is computed as

SSE =TSS — SSA— SSB — SS(AB)



As we have assumed RBD will be used for the experiment, the ANOVA table

is given as
Source Degrees
of
variation| Sum of squares of freedom Mean square Fy
Blocks | SS(Blocks) = 1 é Y2 — % r—1 M S(Blocks)
k=1 5s(Blocks)
—1
A SSA 1 MSA =534 M4
B SSB 1 MSB = 558 M2B
AB SS(AB) 1 MS(AB) = 5B | MS(AD)
Error | SSE = TSS — SSA — SSB — | 3(r — 1) MSE = 32755
SS(AB)
Total 7SS 4r —1

Let M is the mean yield defined by

1
M = 7 ([ab] + [a] + (8] + [1])
The sign table is
Effects (1) a b ab
M + + + +
A -+ - +
B - - + +
AB + - - +

2.2 The 2° design

Suppose that three factors , A, B and C' each at 2 levels are of interest. The
23 = 8 treatment combinations are (1), a, b, ab, ¢, ac, bc, abc. These treatment

combinations are represented in a cube.
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Figure 6-4 The 2* factorial design.

There are seven degrees of freedom between eight treatment combinations in
23 design. Three degrees of freedom are associated with main effects A, B
and C. Four degrees of freedom is associated with interactions, one each with
AB, AC, BC and one with ABC.

Let the symbols [1], [a], [b], [ab], [c], [ac], [bc], [abc] represent the total of all r
replicates taken at the treatment combinations.

Let us consider estimating main effects. First consider estimation of main
effect A. The effect of A at low level of B and C'is ([a] — [1])/r, effect of A at
high level of B and low level of C is ([ab] — [b])/r, effect of A at low level of
B and high level of C' is (Jac] — [c])/r and effect of A at high level of B and
high level of C' is ([abc] — [ab])/r. So, main effect of A is

A = % (labe] — [ab] + [ac] — [c] + [ab] — [b] + [a] — [1])
Similarly main effect of B is
B = % (labe] — [ac] + [be] — [¢] + [ab] — [a] + [b] —[1])
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and main effect of C' is

¢ = 4% ([abe] — [ab] + [ac] — [a] + [be] — [b] + [¢] — [1])

The interaction effect AB is estimated by average difference between average
of A effects at the two levels of B. At high level of B, the average A effect
is ([abc] — [bc] + [ab] — [b]) /2r and at low level of B the average A effect is
([ac] = [c] + [a] — [1]) /2r. So, the interaction AB is estimated as

AB = - (labe] — [bc] + [ab] — [} — foc] +[c] ~ [a] + [1].

Using same logic the effects of BC' and AC' are estimated as

BC = 417 ([abe] — [ac] + [bc] — [¢] — [ab] + [a] — [b] + [1])

and

1
AC = - (labe] = [be] + [ac] = [¢] — [ab] + (8] — [a] + [1])
The ABC interaction is defined as the average difference between AB inter-
action at two different levels of C.

ABC = (([abe] ~ [bc]) ~ (fac] ~ [d]) ~ (fab] ~ ) + (fa] — [1])

r

= 4*17, ([abe] — [be] — [ac] + [¢] — [ab] + [b] + [a] - [1])

The sign table

Effects (1) a b ab ¢ ac be abe
M 4+ 4+ o+ o+ o+
A -+ -+ -+ =
B - - + + - - + +
cC - - - - 4+ + 4+ o+

AB + - — 4+ + - - +
BC 4+ 4+ - - - — 4+ 4+
AC + - 4+ - =+ =
ABC - + + - + - - +
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The three -factor analysis of variance model is

Yijkt = 1+ Ti + B + vk + (78)ig + (77)ik + (B87)jk + (787V)ijk + €ijka

for 4,5,k = 1,2 and | = 1,2,...,r. Here u is the general effect, 7; is the
effect of it" level of factor A ,B; is the effect of 4t level of factor B, 7 is the
effect of k'™ level of factor C, (7/3); is the interaction effect between 7; and
Bj, (77)ik is the interaction effect between 7; and v, (87); is the interaction
effect between ; and i, (787);jk is the interaction effect between 7;, 55, Vi
and €5 ~ N(0,02).

We assume that

D= Bi=) m=0
i J k
Y B =D (mNae=>_> (B1xr=0
i ik ik
ZZZ(Tﬁ’Y)zjk =0

2

As contrasts are used estimate the effects A, B, C, AB, AC, BC, ABC,
the sum of squares for the effects corresponding to single degree of freedom

contrast is given by
(Contrast)?

55 = 8r

Contrasts = (abc) — (ab) + (ac) — (¢)
Contrastg = (abc) — (ac) + (ab) — (a)
Contrastap = (abc) — (be) + (ac) — (¢) — (ab) + (b) — (a) + (1).

Contrastc = (abc) — (ab) + (ac) — (a) + (be

~
|
—~
=
SN—
_l_
—
2]
~
|
—~
[a—
N—

Contrastpc = (abe) — (ac) + (be) — (¢) — (ab) + (a) — (b) + (1).
Contrast ac = (abe) — (be) + (ac) — () — (ab) + (b) — (a) + (1).
Contrast apc = (abe) — (ab) — (ac) + (¢) — (ab) + (b) + (a) — (1).

As we have assumed RBD will be used for the experiment, the ANOVA table

is given as

12



Source Degrees
of
variation| Sum of squares of freedom Mean square Fy
Blocks | SS(Blocks) = £ i B? — % r—1 M S(Blocks)
=1 5s(Blocks)
1
A SSA 1 MSA =534 M4
B SSB 1 MSB = 558 usB
AB SS(AB) 1 MS(AB) = 5B | MS(AD)
C SScC 1 MSC = 55¢ Msc
BC SS(BC) 1 MS(BC) = 85EA | MS(BC)
AC SS(AC) 1 MS(AC) = 5549) | MS(AC)
ABC | SS(ABC) 1 MS(ABC) MEABC)
SS(?BC)
Error | SSE = TSS — SSA— SSB — | 7(r —1) MSE = 2255
SS(AB)
Total TSS 8r—1

where B is the sum of {th block.

3 Confounding in the 2% factorial design

There are many problems for which it is impossible to perform a complete
replicate of factorial design in a single block. As the number treatment com-
binations get larger the blocks may not remain homogeneous. Confounding
is a design technique for arranging a complete factorial experiment in blocks,
where block size is smaller the number of treatment combinations in one repli-
cate. The technique causes information about certain treatment effects (usu-
ally higher order interactions) to be indistinguishable from or confounded with,
blocks.

Here we consider construction and analysis 2F design in 2P incomplete blocks,

where p < k.

13




3.1 Confounding 2* factorial design in two blocks

Suppose in 22 design we wish to confound the effect of the interaction AB.
In a 22 design there are 4 treatment combinations (1), a, b, ab. Let a single
replicate is divided into blocks. Block 1 contains the treatment combinations
(1) and ab and block 2 contains @ and b. The order in which the treatment
combinations are run within a block is randomly determined.

Suppose we estimate the main effects of A and B just as no blocking had

occurred. So, esimates of A and B are

A =2 ([ab] - [b] + [a] - [1])

N

and

B = (at] ~ o] + ]~ [1)

Note that estimates of A and B are unaffected by block affects as in each
estimate there is one plus and one minus treatment combination from each

block. Now consider the AB interaction

AB = 7 ([ab] — [0] = [a] +[1])

| =

Because the two treatment combination with plus sign are in block 1 and two
treatment combinations with minus sign are in block 2, the block effect =
block 1 - block 2 and AB interactions are identical. That is , AB is con-
founded with blocks.

We see that all treatment combinations with plus sign is assigned to block 1
and treatment combinations with minus sign is assigned to block 2 to con-
found the effect AB with blocks. This approach can be used to confound any
effects (A, B, AB) with blocks. If treatment combinations ab, a is assigned to
block 1 and b and (1) is assigned to block 2, then effect A will be confounded.

The usual practice is to confound the highest order interaction with blocks.

14



® = Run in block 1

¢ =Runin block 2

- +

A
{a) Geometric view

Block 1 Block 2

(n a
ab b

(b) Assignment of the four
runs to two blocks

Figure 7-1 A 2? design in two blocks.

Suppose in a 22 design we wish to confound the interaction effect ABC with
blocks. Then treatment combinations with plus sign on ABC in sign table
a, b, c, abc are assigned to block land treatment combinations with minus sign
on ABC, (1),ab,bc,ac are assigned to block 2. The treatment combinations

within the block are run in random order.

Another method of constructing blocks
Let in general the treatments in 2* are denoted as A* B®2C®3...Z% for

a; =1 or 0.

This method uses the linear combination
L =ajry + agwe + -+ - + oy

where z; is the level of i*" factor appearing in a treatment combination and
«; is the exponent appearing on the i*” factor in the effect to be confounded.
We have x; = 0(low level) or x; = 1(high level). The linear combination L
is called a defining contrast. Treatment combinations that produces same

value of L (mod 2) will be placed in same block. Because the only possible

15



values of L(mod 2) are 0 and 1, this will assign 2¥ treatment combinations

into two blocks.

@ = Runin block 1
© =Runin bleck 2

L

A

{a) Geometric view

Block 1 Block 2

(m

ab b
ac c
be abe

(&) Assignment of the eight
runs to two blocks

Figure 7-2 The 2 design in two blocks with ABC

Let us consider a 23 experiment where the effect ABC to be confounded. Here

a1 = as = ag = 1 . So the defining contrast corresponds to ABC' is
L=z + 29+ 23

The treatment combination (1) can be written as 000 in (0, 1) notation, there-
fore
L=10+10+1.0=0=0(mod2)

Similarly treatment combination a is 100 and henc
L=1141.0+10=1=1(mod2)

Hence the treatment combintions (1) and a go to different blocks.
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The remaining treatment combinations are

b:L = 10+11+41.0=1=1(mod2)
c:L = 1.0+1.0+11=1=1(mod2)
ab: L = 11+41.1+41.0=2=0(mod2)
ac: L = 114+1.0+1.1=2=0(mod2)
bc: L = 1.0+4+1.1+41.1=2=0(mod2)
abc: L = 11+11+1.1=3=1(mod2)

Thus (1), ab, ac, be are run in block 1 and a, b, ¢, abc are run in block 2.

The block containing the treatment combination (1) is called the principal
block. The treatment combinations in this block form a group with respect
to multiplication modulas 2. This implies any element [except (1)] in the
principal block can be generated by multiplying the two other elements in
the principal block modulas 2. For example, consider a 23 design with ABC
confounded. Note that

ab.ac = a’bc = be
ab.bc = ab’c=ac
be.ac = abc® = ab

Treatment combinations in other can be obtained by multiplying the elements
of principal block modulas 2 with one element of other block. In 23 design if
ABC'is confounded then principal block contains (1), ab, be, ac. We know a is
in the other block. Thus the elements in the other block are

17



bc.a = abc = abe

This agrees with previous results.

Estimation of Error

To estimate the error it is necessary to replicate the experiment. For exam-
ple, a 23 factorial experiment with ABC must be run in two blocks and the
experimenter decides to replicate the design r times.

There are 8r observations and 8r — 1 total degrees of freedom. Because there
are 2r blocks 2r — 1 degrees of freedom must be associated with these blocks.
The Analysis of variance table for four replicates of a 23 design with ABC

confounded is

Sources of variation Degrees of freedom
Blocks 2r -1
A 1
B
C
AB
AC
BC 1
Error 6(r-1)
Total 8r-1

T ey
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3.2 Confounding 2* Factorial Design in Four Blocks

It is possible to 2* factorial design confounded in four blocks of 2¥~2 obser-
vations each. This design is useful when the number of factors is moderately
large, say k > 4 and block sizes are relatively small.

As an example, consider 2° design. If each block hold 8 treatment combina-
tions, then four blocks must be used. Suppose we want to confound the effects
of ADE and BCFE. The effects have two defining contrasts

Ly = x1+z4+ 25
Ly = xzo+ a3+ 25
associated with them. Now every treatment combination will yield a particualr
pair of values of L;(mod2) and Lo(mod2). The set of all posiisble values of the
pair (L1, Ls) is {(0,0),(0,1),(1,0),(1,1)}. Treatment combinations yielding
same values of (L, Lo) are assigned to same block. In our example we find
L =0,Ly =0 for (1),ad,bc,abe,ace,bde,cde,abed
Li1=1,Ly =0 for a,d,abc,be,ce,abde,acde,bcd
L1=0,Ly=1 for b, abd,c,ae,abce,de,bede,acd
Li=1,Lo =1 for e, ade,bce, ab,ac,bd,cd, abcde

Block 1 Block 2 Block 3 Block 4
L =0 L, =1 L,=0 L,=1
L,=0 L,=0 L,=1 L,=1
{1) abe a be b abcee e abede
ad ace d abde abd ae ade bd
be cde abe  ce ¢ bede bee ac
abed bde bed acde acd de ab cd

Figure 7-5 The 2° design in four blocks with ADE,
BCE, and ABCD confounded,

As there are four blocks, there must be three degrees of freedom between

them. But ADE and BCFE have only one degrees of freedom each, so an
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additional effect with one degrees of freedom must be confounded. This effect
is called generalized interaction of ADFE and BC'E which is defined to be
product of ADE and BCE modulas 2. Here the generalized interaction is
(ADE)(BCE) = ABCDE? = ABCD is also confounded with blocks.

3.3 Confounding the 2* Factorial Design in 2 Blocks

The method described above can be extended to the construction of a 2% fac-
torial design confounded in 2P blocks, (p < k) where each block conatains
2k=P runs. We select p independent effects to be confounded where by “inde-
pendent” we mean that no effect is generalized interaction of others.

The blocks may be generated by use of the p defining contrasts Ly, Lo, --- L,
associated with effects. The treatment combinations with same value of
(L1, Lo, ..., Ly)is assigned to same blocks. In addition to these p effects
exactly 2P — p — 1 will be confounded with blocks, these being generalized
interaction of the p independent effects initially chosen to be confounded.
For example, we want to construct 2° design confounded in 2% = 8 blocks
each with 23 = 8 runs. The three independent effects ABEF, ABCD and
ACE are chosen to be confounded. Then their 2P — p — 1 = 4 generalized

interactions will also be confounded. They are

(ABEF)(ABCD) = A’B°CDEF = CDEF
(ABEF)(ACE) = A’BCE*F = BCF
(ABCD)(ACE) = A*2BC*DFE = BDE

(ABEF)(ABCD)(ACE) = A*B*C*DE*F = ADF

Exercise: Construct the 8 blocks.

3.4 Partial Confounding

We have seen that in a example in section 3.1 that 23 conducted in two blocks

with ABC confounded with blocks. Suppose to estimate the error the experi-
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ment is replicated replicated 4 times. If ABC is confounded in each replicate,
then design is said to be completely confounded. In that no information
about the intercation ABC' can not be retrived.

Suppose instead of confounding ABC in each of replicates we confound dif-
ferent interaction in each replicate. That is ABC' is confounded in replicate
I, AB is confounded in replicate II, BC is confounded in replicate 1] and
AC is confounded in replicate IV.

Replicate I Replicate 1T Replicate I Replicate IV
ABC Confounded AB Confounded BC Confounded AC Confounded
(1) a (%] a (1 b (1) a
ab b ¢ b a c b ¢
ac ¢ ab ac be ab ac ab
be abe abe be abe ac abc be

Figure 7-6  Partial confounding in the 2° design.

As a result information about ABC can be obtained from the data in repli-
cates II, III and IV ., information on AB can be obtained from replicates
I, II11, IV, information on AC can be obtained from replicates I, 11, 111
and information on BC' can be obtained from replicates I, II, IV. We say
that 3/4th information can be obtained on the interactions as they uncon-
founded in 3 replicates. Yates called the ratio 3/4 the relative information

for confounded effects. This design is said to be partially confounded.

The ANOVA table for a 2% design with partial confounding is
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Sources of variation Degrees of freedom

Blocks 7
A

B 1

C 1
AB 1
AC 1
BC 1
ABC 1
Error 17
Total 31

Comparison of unconfounded, completely confounded and partially

confounded 2* design

In an unconfounded design, the replicate itself a block and inthis case we shall

2. In a design with complete confounding in

denote the error variance by o
two blocks, a block is half replicate, two blocks makes up a replicate. In this
we denote the error variance as J%/T It is expected that ‘7%/2 < o2

The variance of the estimator of an effect, main or interaction, in a 2 exper-
iment in 7 replicates without confounding is o?/r2¥~2, whereas the variance
of the estimator of each unconfounded effect in 2% experiment with 7 repli-
cates is a% /2 /r2F=2. The information about each effects in an unconfounded
design is 72872 /02 and the information about each unconfounded effect in a
completely confounded design is r2+~2 / a% /2° Since, a% /2 < o2, the completely
confounded design contains more information about unconfounded effects than
unconfounded design. But completely confounded design contains no infor-
mation about effect that has been confounded.

In a partially confounded design with 4 replicates, the information about each

of unconfounded effects is 8/ a% /2 and as only 3 replicates contain information

2

about confounded replication, the amount of information for them is 6/07 /2
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Amount of information

Effect | Unconfounded | ABC completely | AB, AC', BC and ABC
design confounded partially confounded
A 8/a? 8/0%/2 8/0@2
B 8/a? 8/0%/2 8/0%/2
C 8/c? 8/(7%/2 8/0%/2
AB 8/c? 8/0% ), 6/0% ),
AC 8/0? 8/0%/2 6/0%2
BC 8/0? 8/0%/2 6/(7%/2
ABC 8/c? 0 6/0%,
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