
Design of Experiments

1 Factorial Experiments

Many experiments involve the study of the effects of two or more factors.

In general, factorial designs are most effcient in this type of experiment.

By a factorial design, we mean that in each complete trial or replication

of the experiment all possible combinations of the levels of the factors are

investigated. For example, if there are a levels of factor A and b levels of

factor B, each replicate contains all ab treatment combinations.

The effect of factor is defined to be the change in response produced by a

change in the level of the factor. This is called main effect because it refers

to the primary factors of the experiment. In follwing example, main effect of

factor A is

A =
40 + 52

2
− 20 + 30

2
= 21
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and main effect of factor B is

B =
30 + 52

2
− 20 + 40

2
= 11

In many experiments, we see that the difference of response between the levels

of one factor is not the same at all levels of other factor. When this occurs,

there is a interaction between factors. In the above two factor experiment,

the effect of A at low levels of B is

50− 20 = 30

and effect of A at high level of B is

12− 40 = −28.

The magnitude of the intercation is defined by the average difference between

these two effects

AB =
−28− 30

2
= −29

The Two-Factor Factorial Design

Suppose there are two treatments A and B. There are a levels of factor A

and b levels of factor B and these are arranged in a factorial design and each

of ab treatment combinations is replicated r times. We can use CRD or RBD

for factorial experiment.

If CRD is used then the observations yijk from kth replicate of ith level of

factor A and jth level of factor B can be modeled as

yijk = µ+ τi + βj + (τβ)ij + εijk

for i = 1, . . . , a, j = 1, 2, . . . , b and k = 1, 2, . . . , r. Here µ is the general effect,

τi is the effect of ith level of factor A ,βj is the effect of jth level of factor B

and (τβ)ij is the interaction effect between τi and βj and εijk ∼ N(0, σ2). We

assume that ∑
i

τi =
∑
j

βj =
∑
i

∑
j

(τβ)ij = 0

The null hypothesis to be tested are

(a) equality of different levels of factor A

H0 : τ1 = τ2 = . . . = τa = 0
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against

H1 : τi 6= 0 for at least one i

(b) equality of different levels of factor B

H0 : β1 = β2 = . . . = βb = 0

against

H1 : βi 6= 0 for at least one i

and

(c)

H0 : (τβ)ij = 0 for alli, j

against

H1 : (τβ)ij 6= 0 for at least one pair i, j

Analysis

Define

ȳi·· =
1

br

b∑
j=1

r∑
k=1

yijk

ȳ·j· =
1

ar

a∑
i=1

r∑
k=1

yijk

ȳij· =
1

r

r∑
k=1

yijk

ȳ··· =
1

abr

a∑
i=1

b∑
j=1

r∑
k=1

yijk

The total sum of squares can be written as

a∑
i=1

b∑
j=1

r∑
k=1

(yijk − ȳ···)2 = br
a∑
i=1

(ȳi·· − ȳ···)2 + ar
b∑

j=1

(ȳ·j· − ȳ···)2

+r
a∑
i=1

b∑
j=1

(ȳij· − ȳi·· − ȳ·j· + ȳ···)
2

+

a∑
i=1

b∑
j=1

r∑
k=1

(yijk − ȳ···)2
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that is

TSS = SSA+ SSB + SS(AB) + SSE

Also. it can be shown that

E(MSA) = E

(
SSA

a− 1

)
= σ2 +

br
a∑
i=1

τ2i

a− 1

E(MSB) = E

(
SSA

b− 1

)
= σ2 +

ar
b∑

j=1
β2j

b− 1

E(MS(AB)) = E

(
SS(AB)

(a− 1)(b− 1)

)
= σ2 +

r
a∑
i=1

b∑
j=1

(τβ)2ij

(a− 1)(b− 1)

E(MSE) = E

(
SSE

ab(r − 1)

)
= σ2

The ANOVA for two factor factorial experiment is

Source of Degrees

variation Sum of squares of freedom Mean square F0

A Treat-

ments

SSA = 1
rb

a∑
i=1

y2i·· −
y2···
abr a− 1 MSA = SSA

a−1
MSA
MSE

B Treat-

ments

SSB = 1
ra

b∑
j=1

y2·j· −
y2···
abr b− 1 MSB = SSB

b−1
MSB
MSE

Interactions SS(AB) = 1
r

a∑
i=1

b∑
j=1

y2ij· −
y2···
abr −

SSA− SSB

(a−1)(b−1) MS(AB) =
SS(AB)

(a−1)(b−1)

MS(AB)
MSE

Error SSE = TSS − SSA − SSB −
SS(AB)

ab(r − 1) MSE = SSE
ab(r−1))

Total TSS =
a∑
i=1

b∑
j=1

r∑
k=1

y2ijk −
y2···
abr abr − 1

If RBD is used with r blocks then model will be

yijk = µ+ τi + βj + (τβ)ij + δk + εijk

for i = 1, . . . , a, j = 1, 2, . . . , b and k = 1, 2, . . . , r. Here δk is the effect of kth

block and
∑
k

δk = 0. Other parameters are same as CRD model.
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The ANOVA table will be

Source

of

Degrees

variation Sum of squares of freedom Mean square F0

Blocks SS(Blocks) = 1
ab

r∑
k=1

y2··k −
y2···
abr r − 1 MS(Blocks) =

SS(Blocks)
r−1

A SSA = 1
rb

a∑
i=1

y2i·· −
y2···
abr a− 1 MSA = SSA

a−1
MSA
MSE

B SSB = 1
ra

b∑
j=1

y2·j· −
y2···
abr b− 1 MSB = SSB

b−1
MSB
MSE

AB SS(AB) = 1
r

a∑
i=1

b∑
j=1

y2ij· −
y2···
abr −

SSA− SSB

(a− 1)(b− 1) MS(AB) =
SS(AB)

(a−1)(b−1)

MS(AB)
MSE

Error SSE = TSS − SSA − SSB −
SS(AB)

(ab−1)(r−1) MSE = SSE
(ab−1)(r−1)

Total TSS =
a∑
i=1

b∑
j=1

r∑
k=1

y2ijk −
y2···
abr abr − 1

2 2k Factorial design

Suppose we want to compare k factors each at two levels. The levels may be

quantitative such as two values of temparature, preasure or time. A complete

replicate of such design requires 2× 2×· · ·× 2 = 2k observations and is called

2k factorial design. We will assume that RBD is used for the design and nor-

mality assumption of errors is satisfied.

2.1 The 22 design

Suppose there are two factors each run at two levels. This design is called 22

design. The levels of the factors may be called “low” and “high”. Consider
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the following example

Factors Treatment Replicates Total

A B Combinations I II III

− − A low, B low 28 25 27 80

+ − A high, B low 36 32 32 100

− + A low, B high 18 19 23 60

+ + A high, B high 31 30 29 90

Now, let us denote the high level of factor in treatment combination by the

corresponding lowecase of the letter and low level of factor by the absence of

the corresponding letter. Thus, a represents high level of A and low level of

B, b represents A at the low level and B at the high level and ab represents

both A and B at high level and (1) represents both factors at low level.
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Let the symbols [1], [a], [b], [ab] represent the total of all r replicates taken at

the treatment combinations.

The effect of A at low level of B is ([a] − [1])/r and effect of A at high level

of B is ([ab]− [b])/r. The main effect of A is obtained by averaging of these

two quantities that is the main effect of A is

A =
1

2r
([ab]− [b] + [a]− [1]) =

1

2r
([a]− [1]) ([b] + [1])

Similarly, the effect of B at low level of A is ([b] − [1])/r and effect of B at

high level of A is ([ab]− [a])/r. Hence main effect of B is

B =
1

2r
([ab]− [a] + [b]− [1]) =

1

2r
([a] + [1]) ([b]− [1])

The interaction effect is the average difference between effect of A at high

level of B and effect of A at low level of B that is

AB =
1

2r
([ab]− [b]− [a] + [1]) =

1

2r
([a]− [1]) ([b]− [1])

Note that AB and BA are same.

To calculate the sum of squares we note that contrasts are used in estimating

A namely

ContrastA = (ab)− (b) + (a)− (1).

We can also see that

ContrastB = (ab)− (a) + (b)− (1)

and

ContrastAB = (ab)− (a)− (b) + (1)

Furthurmore , these three contrasts are orthogonal.

In general, a contrast is a linear combination of the parameters of the form,

Γ =
v∑
i=1

ciµi
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where
v∑
i=1

ci = 0. To test

H0 : Γ = 0

we use the statistic

t0 =

v∑
i=1

ciyi√
nMSE

v∑
i=1

c2i

We can also use

F0 =

(
v∑
i=1

ciyi

)2

nMSE
v∑
i=1

c2i

=
SSC/1

MSE
.

We reject H0 is F0 > Fα,1,n−v. The sum of squares is

SSC =

(
v∑
i=1

ciyi

)2

n
v∑
i=1

c2i

Using this formula we get the sum of squares of treatment combinations as

SSA =
([ab]− [b] + [a]− [1])2

4r

SSB =
([ab] + [b]− [a]− [1])2

4r
and

SS(AB) =
([ab]− [b] + [a]− [1])2

4r

The total sum of squares is obtained as

TSS =
2∑
i=1

2∑
j=1

r∑
k=1

y2ijk −
y2···
4r

where y··· =
2∑
i=1

2∑
j=1

r∑
k=1

yijk. The total sum of squares has 4r − 1 degrees of

freedom. The error sum of squares is computed as

SSE = TSS − SSA− SSB − SS(AB)
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As we have assumed RBD will be used for the experiment, the ANOVA table

is given as

Source

of

Degrees

variation Sum of squares of freedom Mean square F0

Blocks SS(Blocks) = 1
4

r∑
k=1

y2··k −
y2···
4r r − 1 MS(Blocks) =

SS(Blocks)
r−1

A SSA 1 MSA = SSA
1

MSA
MSE

B SSB 1 MSB = SSB
1

MSB
MSE

AB SS(AB) 1 MS(AB) = SS(AB)
1

MS(AB)
MSE

Error SSE = TSS − SSA − SSB −
SS(AB)

3(r − 1) MSE = SSE
3(r−1)

Total TSS 4r − 1

Let M is the mean yield defined by

M =
1

4
([ab] + [a] + [b] + [1])

The sign table is

Effects (1) a b ab

M + + + +

A − + − +

B − − + +

AB + − − +

2.2 The 23 design

Suppose that three factors , A, B and C each at 2 levels are of interest. The

23 = 8 treatment combinations are (1), a, b, ab, c, ac, bc, abc. These treatment

combinations are represented in a cube.
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There are seven degrees of freedom between eight treatment combinations in

23 design. Three degrees of freedom are associated with main effects A, B

and C. Four degrees of freedom is associated with interactions, one each with

AB, AC, BC and one with ABC.

Let the symbols [1], [a], [b], [ab], [c], [ac], [bc], [abc] represent the total of all r

replicates taken at the treatment combinations.

Let us consider estimating main effects. First consider estimation of main

effect A. The effect of A at low level of B and C is ([a]− [1])/r, effect of A at

high level of B and low level of C is ([ab] − [b])/r, effect of A at low level of

B and high level of C is ([ac] − [c])/r and effect of A at high level of B and

high level of C is ([abc]− [ab])/r. So, main effect of A is

A =
1

4r
([abc]− [ab] + [ac]− [c] + [ab]− [b] + [a]− [1])

Similarly main effect of B is

B =
1

4r
([abc]− [ac] + [bc]− [c] + [ab]− [a] + [b]− [1])
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and main effect of C is

C =
1

4r
([abc]− [ab] + [ac]− [a] + [bc]− [b] + [c]− [1])

The interaction effect AB is estimated by average difference between average

of A effects at the two levels of B. At high level of B, the average A effect

is ([abc]− [bc] + [ab]− [b]) /2r and at low level of B the average A effect is

([ac]− [c] + [a]− [1]) /2r. So, the interaction AB is estimated as

AB =
1

4r
([abc]− [bc] + [ab]− [b]− [ac] + [c]− [a] + [1]) .

Using same logic the effects of BC and AC are estimated as

BC =
1

4r
([abc]− [ac] + [bc]− [c]− [ab] + [a]− [b] + [1])

and

AC =
1

4r
([abc]− [bc] + [ac]− [c]− [ab] + [b]− [a] + [1])

The ABC interaction is defined as the average difference between AB inter-

action at two different levels of C.

ABC =
1

4r
(([abc]− [bc])− ([ac]− [c])− ([ab]− [b]) + ([a]− [1]))

=
1

4r
([abc]− [bc]− [ac] + [c]− [ab] + [b] + [a]− [1])

The sign table

Effects (1) a b ab c ac bc abc

M + + + + + + + +

A − + − + − + − +

B − − + + − − + +

C − − − − + + + +

AB + − − + + − − +

BC + + − − − − + +

AC + − + − − + − +

ABC − + + − + − − +
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The three -factor analysis of variance model is

yijkl = µ+ τi + βj + γk + (τβ)ij + (τγ)ik + (βγ)jk + (τβγ)ijk + εijkl

for i, j, k = 1, 2 and l = 1, 2, . . . , r. Here µ is the general effect, τi is the

effect of ith level of factor A ,βj is the effect of jth level of factor B, γk is the

effect of kth level of factor C, (τβ)ij is the interaction effect between τi and

βj , (τγ)ik is the interaction effect between τi and γk, (βγ)jk is the interaction

effect between βj and γk, (τβγ)ijk is the interaction effect between τi, βj , γk

and εijkl ∼ N(0, σ2).

We assume that ∑
i

τi =
∑
j

βj =
∑
k

γk = 0

∑
i

∑
j

(τβ)ij =
∑
i

∑
k

(τγ)ik =
∑
j

∑
k

(βγ)jk = 0

∑
i

∑
j

∑
k

(τβγ)ijk = 0

As contrasts are used estimate the effects A, B, C, AB, AC, BC, ABC,

the sum of squares for the effects corresponding to single degree of freedom

contrast is given by

SS =
(Contrast)2

8r

ContrastA = (abc)− (ab) + (ac)− (c) + (ab)− (b) + (a)− (1).

ContrastB = (abc)− (ac) + (ab)− (a) + (bc)− (c) + (b)− (1).

ContrastAB = (abc)− (bc) + (ac)− (c)− (ab) + (b)− (a) + (1).

ContrastC = (abc)− (ab) + (ac)− (a) + (bc)− (b) + (c)− (1).

ContrastBC = (abc)− (ac) + (bc)− (c)− (ab) + (a)− (b) + (1).

ContrastAC = (abc)− (bc) + (ac)− (c)− (ab) + (b)− (a) + (1).

ContrastABC = (abc)− (ab)− (ac) + (c)− (ab) + (b) + (a)− (1).

As we have assumed RBD will be used for the experiment, the ANOVA table

is given as
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Source

of

Degrees

variation Sum of squares of freedom Mean square F0

Blocks SS(Blocks) = 1
8

r∑
l=1

B2
l −

y2····
8r r − 1 MS(Blocks) =

SS(Blocks)
r−1

A SSA 1 MSA = SSA
1

MSA
MSE

B SSB 1 MSB = SSB
1

MSB
MSE

AB SS(AB) 1 MS(AB) = SS(AB)
1

MS(AB)
MSE

C SSC 1 MSC = SSC
1

MSC
MSE

BC SS(BC) 1 MS(BC) = SS(BC)
1

MS(BC)
MSE

AC SS(AC) 1 MS(AC) = SS(AC)
1

MS(AC)
MSE

ABC SS(ABC) 1 MS(ABC) =
SS(ABC)

1

MS(ABC)
MSE

Error SSE = TSS − SSA − SSB −
SS(AB)

7(r − 1) MSE = SSE
7(r−1)

Total TSS 8r − 1

where Bl is the sum of lth block.

3 Confounding in the 2k factorial design

There are many problems for which it is impossible to perform a complete

replicate of factorial design in a single block. As the number treatment com-

binations get larger the blocks may not remain homogeneous. Confounding

is a design technique for arranging a complete factorial experiment in blocks,

where block size is smaller the number of treatment combinations in one repli-

cate. The technique causes information about certain treatment effects (usu-

ally higher order interactions) to be indistinguishable from or confounded with,

blocks.

Here we consider construction and analysis 2k design in 2p incomplete blocks,

where p < k.
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3.1 Confounding 2k factorial design in two blocks

Suppose in 22 design we wish to confound the effect of the interaction AB.

In a 22 design there are 4 treatment combinations (1), a, b, ab. Let a single

replicate is divided into blocks. Block 1 contains the treatment combinations

(1) and ab and block 2 contains a and b. The order in which the treatment

combinations are run within a block is randomly determined.

Suppose we estimate the main effects of A and B just as no blocking had

occurred. So, esimates of A and B are

A =
1

2
([ab]− [b] + [a]− [1])

and

B =
1

2
([ab]− [a] + [b]− [1])

Note that estimates of A and B are unaffected by block affects as in each

estimate there is one plus and one minus treatment combination from each

block. Now consider the AB interaction

AB =
1

2
([ab]− [b]− [a] + [1])

Because the two treatment combination with plus sign are in block 1 and two

treatment combinations with minus sign are in block 2, the block effect =

block 1 - block 2 and AB interactions are identical. That is , AB is con-

founded with blocks.

We see that all treatment combinations with plus sign is assigned to block 1

and treatment combinations with minus sign is assigned to block 2 to con-

found the effect AB with blocks. This approach can be used to confound any

effects (A,B,AB) with blocks. If treatment combinations ab, a is assigned to

block 1 and b and (1) is assigned to block 2, then effect A will be confounded.

The usual practice is to confound the highest order interaction with blocks.
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Suppose in a 23 design we wish to confound the interaction effect ABC with

blocks. Then treatment combinations with plus sign on ABC in sign table

a, b, c, abc are assigned to block 1and treatment combinations with minus sign

on ABC, (1), ab, bc, ac are assigned to block 2. The treatment combinations

within the block are run in random order.

Another method of constructing blocks

Let in general the treatments in 2k are denoted as Aα1Bα2Cα3 · · ·Zαk for

αi = 1 or 0.

This method uses the linear combination

L = α1x1 + α2x2 + · · ·+ αkxk

where xi is the level of ith factor appearing in a treatment combination and

αi is the exponent appearing on the ith factor in the effect to be confounded.

We have xi = 0(low level) or xi = 1(high level). The linear combination L

is called a defining contrast. Treatment combinations that produces same

value of L (mod 2) will be placed in same block. Because the only possible
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values of L(mod 2) are 0 and 1, this will assign 2k treatment combinations

into two blocks.

Let us consider a 23 experiment where the effect ABC to be confounded. Here

α1 = α2 = α3 = 1 . So the defining contrast corresponds to ABC is

L = x1 + x2 + x3

The treatment combination (1) can be written as 000 in (0, 1) notation, there-

fore

L = 1.0 + 1.0 + 1.0 = 0 = 0(mod2)

Similarly treatment combination a is 100 and henc

L = 1.1 + 1.0 + 1.0 = 1 = 1(mod2)

Hence the treatment combintions (1) and a go to different blocks.
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The remaining treatment combinations are

b : L = 1.0 + 1.1 + 1.0 = 1 = 1(mod2)

c : L = 1.0 + 1.0 + 1.1 = 1 = 1(mod2)

ab : L = 1.1 + 1.1 + 1.0 = 2 = 0(mod2)

ac : L = 1.1 + 1.0 + 1.1 = 2 = 0(mod2)

bc : L = 1.0 + 1.1 + 1.1 = 2 = 0(mod2)

abc : L = 1.1 + 1.1 + 1.1 = 3 = 1(mod2)

Thus (1), ab, ac, bc are run in block 1 and a, b, c, abc are run in block 2.

The block containing the treatment combination (1) is called the principal

block. The treatment combinations in this block form a group with respect

to multiplication modulas 2. This implies any element [except (1)] in the

principal block can be generated by multiplying the two other elements in

the principal block modulas 2. For example, consider a 23 design with ABC

confounded. Note that

ab.ac = a2bc = bc

ab.bc = ab2c = ac

bc.ac = abc2 = ab

Treatment combinations in other can be obtained by multiplying the elements

of principal block modulas 2 with one element of other block. In 23 design if

ABC is confounded then principal block contains (1), ab, bc, ac. We know a is

in the other block. Thus the elements in the other block are
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(1).a = a

ab.a = a2b = b

bc.a = abc = abc

ac.a = a2c = c

This agrees with previous results.

Estimation of Error

To estimate the error it is necessary to replicate the experiment. For exam-

ple, a 23 factorial experiment with ABC must be run in two blocks and the

experimenter decides to replicate the design r times.

There are 8r observations and 8r− 1 total degrees of freedom. Because there

are 2r blocks 2r− 1 degrees of freedom must be associated with these blocks.

The Analysis of variance table for four replicates of a 23 design with ABC

confounded is

Sources of variation Degrees of freedom

Blocks 2r - 1

A 1

B 1

C 1

AB 1

AC 1

BC 1

Error 6(r-1)

Total 8r - 1
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3.2 Confounding 2k Factorial Design in Four Blocks

It is possible to 2k factorial design confounded in four blocks of 2k−2 obser-

vations each. This design is useful when the number of factors is moderately

large, say k ≥ 4 and block sizes are relatively small.

As an example, consider 25 design. If each block hold 8 treatment combina-

tions, then four blocks must be used. Suppose we want to confound the effects

of ADE and BCE. The effects have two defining contrasts

L1 = x1 + x4 + x5

L2 = x2 + x3 + x5

associated with them. Now every treatment combination will yield a particualr

pair of values of L1(mod2) and L2(mod2). The set of all posiisble values of the

pair (L1, L2) is {(0, 0), (0, 1), (1, 0), (1, 1)}. Treatment combinations yielding

same values of (L1, L2) are assigned to same block. In our example we find

L1 = 0, L2 = 0 for (1), ad, bc, abe, ace, bde, cde, abcd

L1 = 1, L2 = 0 for a, d, abc, be, ce, abde, acde, bcd

L1 = 0, L2 = 1 for b, abd, c, ae, abce, de, bcde, acd

L1 = 1, L2 = 1 for e, ade, bce, ab, ac, bd, cd, abcde

As there are four blocks, there must be three degrees of freedom between

them. But ADE and BCE have only one degrees of freedom each, so an
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additional effect with one degrees of freedom must be confounded. This effect

is called generalized interaction of ADE and BCE which is defined to be

product of ADE and BCE modulas 2. Here the generalized interaction is

(ADE)(BCE) = ABCDE2 = ABCD is also confounded with blocks.

3.3 Confounding the 2k Factorial Design in 2p Blocks

The method described above can be extended to the construction of a 2k fac-

torial design confounded in 2p blocks, (p < k) where each block conatains

2k−p runs. We select p independent effects to be confounded where by “inde-

pendent” we mean that no effect is generalized interaction of others.

The blocks may be generated by use of the p defining contrasts L1, L2, · · ·Lp
associated with effects. The treatment combinations with same value of

(L1, L2, . . . , Lp)is assigned to same blocks. In addition to these p effects

exactly 2p − p − 1 will be confounded with blocks, these being generalized

interaction of the p independent effects initially chosen to be confounded.

For example, we want to construct 26 design confounded in 23 = 8 blocks

each with 23 = 8 runs. The three independent effects ABEF , ABCD and

ACE are chosen to be confounded. Then their 2p − p − 1 = 4 generalized

interactions will also be confounded. They are

(ABEF )(ABCD) = A2B2CDEF = CDEF

(ABEF )(ACE) = A2BCE2F = BCF

(ABCD)(ACE) = A2BC2DE = BDE

(ABEF )(ABCD)(ACE) = A3B2C2DE2F = ADF

Exercise: Construct the 8 blocks.

3.4 Partial Confounding

We have seen that in a example in section 3.1 that 23 conducted in two blocks

with ABC confounded with blocks. Suppose to estimate the error the experi-
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ment is replicated replicated 4 times. If ABC is confounded in each replicate,

then design is said to be completely confounded. In that no information

about the intercation ABC can not be retrived.

Suppose instead of confounding ABC in each of replicates we confound dif-

ferent interaction in each replicate. That is ABC is confounded in replicate

I, AB is confounded in replicate II, BC is confounded in replicate III and

AC is confounded in replicate IV .

As a result information about ABC can be obtained from the data in repli-

cates II, III and IV ., information on AB can be obtained from replicates

I, III, IV , information on AC can be obtained from replicates I, II, III

and information on BC can be obtained from replicates I, II, IV . We say

that 3/4th information can be obtained on the interactions as they uncon-

founded in 3 replicates. Yates called the ratio 3/4 the relative information

for confounded effects. This design is said to be partially confounded.

The ANOVA table for a 23 design with partial confounding is
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Sources of variation Degrees of freedom

Blocks 7

A 1

B 1

C 1

AB 1

AC 1

BC 1

ABC 1

Error 17

Total 31

Comparison of unconfounded, completely confounded and partially

confounded 2k design

In an unconfounded design, the replicate itself a block and inthis case we shall

denote the error variance by σ2. In a design with complete confounding in

two blocks, a block is half replicate, two blocks makes up a replicate. In this

we denote the error variance as σ21/2. It is expected that σ21/2 < σ2.

The variance of the estimator of an effect, main or interaction, in a 2k exper-

iment in r replicates without confounding is σ2/r2k−2, whereas the variance

of the estimator of each unconfounded effect in 2k experiment with r repli-

cates is σ21/2/r2
k−2. The information about each effects in an unconfounded

design is r2k−2/σ2 and the information about each unconfounded effect in a

completely confounded design is r2k−2/σ21/2. Since, σ21/2 < σ2, the completely

confounded design contains more information about unconfounded effects than

unconfounded design. But completely confounded design contains no infor-

mation about effect that has been confounded.

In a partially confounded design with 4 replicates, the information about each

of unconfounded effects is 8/σ21/2 and as only 3 replicates contain information

about confounded replication, the amount of information for them is 6/σ21/2.
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Amount of information

Effect Unconfounded ABC completely AB, AC, BC and ABC

design confounded partially confounded

A 8/σ2 8/σ21/2 8/σ21/2

B 8/σ2 8/σ21/2 8/σ21/2

C 8/σ2 8/σ21/2 8/σ21/2

AB 8/σ2 8/σ21/2 6/σ21/2

AC 8/σ2 8/σ21/2 6/σ21/2

BC 8/σ2 8/σ21/2 6/σ21/2

ABC 8/σ2 0 6/σ21/2
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