
Principal Component Analysis

1 Introduction

Principal component analysis is a dimension reduction technique in mul-

tivariate analysis. The principal idea of reducing the dimension of X =

(X1, X2, . . . , Xp)
′ is achieved through linear combination. Low dimensional

linear combinations are easier to interpret and serve as an intermediate step

as in a more complex analysis. More precisely one looks for linear combination

which create largest spread among the values of X. In other words, one is

searching for linear combinations of variables with largest variances.

Consider an the following example

Let (X1, X2)
′ ∼ N2((0, 0)′,Σ) where Σ =

(
1 0.8

0.8 1

)
. The scatterplot of 100

sample drawn from this distribution is as follows
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Let us consider the following transformation X→ Y

Y1 = a11X1 + a12X2

Y2 = a21X1 + a22X2

or

Y = AX

The components of A are chosen such that V ar(Y1) is maximized. The vectors

a′i = (ai1, ai2)
′ for i = 1, 2 are chosen such that aia

′
j = 0 and aia

′
i = 1, that is

the row vectors of coefficient matrix are orthonormal.

Let

Y1 =
1√
2
X1 +

1√
2
X2

Y2 =
1√
2
X1 −

1√
2
X2

Then

V (Y1) =
1

2
(V (X1) + V (X2) + 2Cov(X1, X2)) = 1.8

and

V (Y2) =
1

2
(V (X1) + V (X2)− 2Cov(X1, X2)) = 0.2.
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So the linear combination Y1 explains 90% of total variability V (Y1) + V (Y2).

Y1 is first principal component. It can be verified that

V (X1) + V (X2) = V (Y1) + V (Y2)

General Model

Y1 = a11X1 + a12X2 + . . .+ a1pXp = a′
1X

Y2 = a21X1 + a22X2 + . . .+ a2pXp = a′
2X

...
...

Yp = ap1X1 + ap2X2 + . . .+ appXp = a′
pX

or

Y = AX

Y = (Y1, Y2, . . . , Yp)
′ are the principal components. Yj is the jth principal

component.

The model is defined once the elements of A are estimated. Firstly a′
1, a′

2 . . .a
′
p

needs to be orthogonal that is a′
jak = 0 and a′

jaj = 1.

Choose a1 such that V ar(Y1) = V ar(a′
1X) is maximized with respect to a1.

a2 such that V ar(Y2) = V ar(a′
2X) is maximized with respect to a2 subject

to the orthogonality condition and so on. Here we have cov(Yj , Yk) = 0 and

V ar(Y1) ≥ V ar(Y2) ≥ · · · ≥ V ar(Yp)

Also,
p∑
i=1

V ar(Xi) =

p∑
i=1

V ar(Yi).

For the first Y1, Y2, . . . , Yq, q < p we compute

q∑
i=1

V ar(Yi)

p∑
i=1

V ar(Yi)

× 100

If it is reasonably large we can consider these q variables instead of p original

ones.

3



2 Population principal components

Let X = (X1, X2, . . . , Xp)
′ be a p variate random vector with E(X) = µ

and known covariance matrix Σ. We shall consider cases which Σ is positive

semidefinite matrix. Since we shall be concerned with variances and covari-

ances of X we shall assume that µ = 0. The first principal component the

normalized linear combination Y1 = α′Xwhere α = (α1, α2, . . . , αp)
′ is such

that α′α = 1 and

V ar(α′X) = max
l
V ar(l′X)

with l′ ∈ Rp satisfying L′L = 1.

Now

V (l′X) = l′Σl.

Thus to find first principal component α′X we need to the α such that max-

imizes l′ΣL for all choices of l ∈ Rp subject to the restriction l′l = 1. Using

the Lagrange’s multiplier λ we need to find the α that maximizes

φ1(l) = l′Σl − λ(l′l − 1)

for all choices of l ∈ Rp satisfying l′l = 1. Now

∂φ1
∂l

= 0

or 2Σl − 2λl = 0

or (Σ− λI) l = 0

So, α satisfies the equation (Σ− λI)α = 0 . . . (1). Since α 6= 0 as a consquence

of α′α = 1, the equation (1) has a solution if |Σ− λI| = 0.

That is λ is the characteristic root of Σ and α is the corresponding character-

istic vector. Since dimension of Σ is p× p there are p values of λ. Let

λ1 ≥ λ2 ≥ · · · ≥ λp

denote the ordered characteristic roots and

α1 = (α11, . . . , α1p)
′ . . . αp = (αp1, . . . , αpp)

′
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denote the characteristic vectors of Σ. Now, Σ may have zero characteristic

root or some the roots may have multiplicity greater than unity.

Now, (Σ− λI)α = 0 gives

V ar(α′X) = α′Σα = λα′α = λ.

where λ is the characteristic root Σ corresponding to α. Thus to maximize

V ar(α′X) we need to choose λ = λ1, the largest characteristic root of Σ and

α = α1 is the characteristic root corresponding to λ1.

So the first principal component is the normalized linear function

Y1 = α′
1X =

p∑
i=1

α1iXi

where α1 is the normalized characteristic vector of Σ corresponding to largest

characteristic root λ1 is called first principal component of X.

The second principal component is the normalized linear function α′X hav-

ing maximum variance among all normalized linear functions l′X that are

uncorrelated with Y1.

cov
(
l′X,Y1

)
= E

(
l′XY1

)
= E

(
l′Xl′1

)
= E

(
l′XX ′α1

)
= l′Σα1 = l′λ1α1 = λ1l

′α1 = 0

This implies l and α1 are otrthogonal. The second principal component will

be linear combination α′X that has maximum variance among all normalized

linear combination l′X,l ∈ Rp which is uncorrelated with Y1. Again by using

Lagrange’s multiplier we will get the second principal component as

Y2 = α′
2X

where α2 is the characteristic vector corresponding to characteristic root λ2.

Continuing in this way we will get the rth principal component as

Yr = α′
rX
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where αr is the characteristic vector corresponding to chracteristic root λr.

Now define matrices

A = (α1, α2, . . . , αp) ,Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λp


where λ1 ≥ λ2 ≥ . . . ≥ λp are ordered characteristic roots and α1, . . . , αp

are the corresponding normalized characteristic vectors. Since AA′ = I and

ΣA = AΛ we conclude that A′ΣA = Λ.

So there exists an orthogonal transformation

Y = A′X

such that D(Z) = Λ a diagonal matrix with diagonal elements λ1 ≥ λ2 ≥
. . . ≥ λp ≥ 0 the ordered roots of |Σ− λI| = 0.

3 Sample principal component

In practice the covariance matrix is usually unknown. If sample obsrevations

on a multivarite random vector is given we have to replace Σ by an estimate of

covariance matrix Σ. Now we assume that X ∼ Np (µ,Σ) where Σ is positive

definite matrix.

Let xα = (xα1, xα2, . . . , xαp)
′, α = 1, 2, . . . , N, (N > p) be a sample of size N

from the distribution of X which is univariate normal with mean vector µ and

dispersion matrix Σ.

Let

x̄ =
1

N

N∑
α=1

xα s =
N∑
α=1

(xα − x̄) (xα − x̄)′ .

The maximumlikelihood estimate of Σ is s
N and that of µ is x̄.
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Theorem: The maximum likelihood estimates of ordered characteristic roots

λ1, λ2, . . . , λp of Σ and corresponding characteristic vector α1, α2, . . . , αp are

, respectively the ordered characteristic roots r1, r2, . . . , rp and characteristic

vector a1, a2, . . . , ap of s/N .

Proof Omitted

The estimate of total system variance is given by

trace
( s

N

)
=

p∑
i=1

ri

and is called total sample variance. The importance of ith principal component

is measured by
ri
p∑
i=1

ri

.

If the estimates of the principal components are obtained by from sample

correlation matrix

R = (rij) rij =
sij

(siisjj)
1/2

with s = (sij) then the total sample variance will be p = trace(R).

If first k principal components explain large amount of total sampel variance,

they may be used in place of original vector X.

Exercise

1. Let 
X1

X2

X3

 ∼ N3




0

0

1

 ,


1 2 1

2 5 2

1 2 2




Obtain the first principal component and obtain the percentage of variability

explained by first principal component.

7



2. Let (X1, X2, X3)
′ is trivariate random vector with correlation matrix

1 0.8944 0.7071

0.8944 1 0.6325

0.7071 0.6325 1


Find the first principal component and obtain the percentage of variability

explained by first principal component.

3. Find principal components of the data “mtcars” in R. (Use “prcomp”

command)
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