Principal Component Analysis

1 Introduction

Principal component analysis is a dimension reduction technique in mul-
tivariate analysis. The principal idea of reducing the dimension of X =
(X1, X2,...,X,) is achieved through linear combination. Low dimensional
linear combinations are easier to interpret and serve as an intermediate step
as in a more complex analysis. More precisely one looks for linear combination
which create largest spread among the values of X. In other words, one is

searching for linear combinations of variables with largest variances.

Consider an the following example
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sample drawn from this distribution is as follows

Let (X1, X2)" ~ N5((0,0),X) where 3 = ( > The scatterplot of 100
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Let us consider the following transformation X — Y

Y1 = anXi+a2Xs
Yo = a1 X1+ a»nXs

or
Y = AX

The components of A are chosen such that Var(Y7) is maximized. The vectors

al = (ai1, ai2) for i = 1,2 are chosen such that a,-a;- =0 and a;a] = 1, that is

the row vectors of coefficient matrix are orthonormal.

Let
1 1
Y1 = X7+ —=X
1 \/i 1 \/§ 2
1 1
Yo = —X;——=X
2 \/5 1 \/i 2
Then
1
V(H) = 5 (V(Xl) + V(Xg) + 2COV(X1,X2)) =1.8
and
1

V(YQ) = 5 (V(Xl) + V(XQ) — QCOV(Xl, XQ)) =0.2.



So the linear combination Y] explains 90% of total variability V(Y1) + V (Y2).

Y] is first principal component. It can be verified that

V(X1) + V(X2) =V (Y1) + V(Y2)

General Model

Y1 = apnXi+apXe+... .+ alep = a/1X
Yo = a9 X1+axnXo+ ...+ angp = a'ZX

}/p = ap1X1 + CLpQXQ + ...+ aprp = a;X
or
Y = AX

Y = (11,Ys,...,Y},) are the principal components. Yj is the 4t principal
component.

The model is defined once the elements of A are estimated. Firstly a7, aj ... aj,
needs to be orthogonal that is a’a, = 0 and aja; = 1.

Choose a; such that Var(Y;) = Var(ajX) is maximized with respect to aj.
ag such that Var(Ys) = Var(a’gX) is maximized with respect to as subject

to the orthogonality condition and so on. Here we have cov(Yj,Y;) = 0 and
Var(Y1) > Var(Ys) > --- > Var(Y,)
Also,
P P
Z Var(X;) = Z Var(Y;).
i=1 i=1

For the first Y1, Y>,...,Y,, ¢ < p we compute

q
> Var(Y;)

Ll x 100
> Var(Y;)

=1

If it is reasonably large we can consider these ¢ variables instead of p original

ones.



2 Population principal components

Let X = (X1,X2,...,X,)" be a p variate random vector with E(X) = p
and known covariance matrix . We shall consider cases which X is positive
semidefinite matrix. Since we shall be concerned with variances and covari-
ances of X we shall assume that g = 0. The first principal component the
normalized linear combination Y7 = o/ Xwhere o = (a1, 2, ..., )" is such
that o’a =1 and

Var(a'X) = max Var(I'X)

with I’ € RP satisfying L'L = 1.
Now

V(I'X) =Sl

Thus to find first principal component o/ X we need to the a such that max-
imizes I’SL for all choices of [ € RP subject to the restriction 'l = 1. Using

the Lagrange’s multiplier A we need to find the a that maximizes
e (1) =Sl = \(1'1 - 1)

for all choices of | € RP satisfying I'l = 1. Now

001

ol
or 2XI—-2)X = 0
or (X-A)Il =0

So, a satisfies the equation (X — AI)a = 0...(1). Since a # 0 as a consquence

of o/ = 1, the equation (1) has a solution if |¥ — AI| = 0.

That is A is the characteristic root of ¥ and « is the corresponding character-

istic vector. Since dimension of 3 is p X p there are p values of A. Let
N> X > >,
denote the ordered characteristic roots and

ar = (a1, .. a1p) ooy = (ap1, ..oy )



denote the characteristic vectors of . Now, 3 may have zero characteristic
root or some the roots may have multiplicity greater than unity.
Now, (¥ — M) =0 gives

Var(d/X) = o'Sa = \da =\

where ) is the characteristic root 3 corresponding to a. Thus to maximize
Var(a/X) we need to choose A = A1, the largest characteristic root of ¥ and

«a = aq is the characteristic root corresponding to Ai.

So the first principal component is the normalized linear function
p
Y1 = O/lX = ZaliXi
i=1

where a7 is the normalized characteristic vector of ¥ corresponding to largest

characteristic root Aj is called first principal component of X.

The second principal component is the normalized linear function o/ X hav-
ing maximum variance among all normalized linear functions I’X that are

uncorrelated with Y.
cov(I'X, V1) =E(I'XY1) =E(I'Xl}) = E(I'XX'o)
= Z/ZOQ = l’)\loq = )\1[’041 =0

This implies I and a; are otrthogonal. The second principal component will
be linear combination o/ X that has maximum variance among all normalized
linear combination I’ Xl € RP which is uncorrelated with Y;. Again by using

Lagrange’s multiplier we will get the second principal component as
Y2 = O/QX

where a9 is the characteristic vector corresponding to characteristic root As.

Continuing in this way we will get the rth principal component as

Y, =a,X



where «,. is the characteristic vector corresponding to chracteristic root A,.

Now define matrices

M O - 0
0 Xy - 0
A=(a,09,...,0p), A=
0 0 - X
where Ay > Ay > ... > A, are ordered characteristic roots and a1,...,q,

are the corresponding normalized characteristic vectors. Since AA" = I and
YA = AA we conclude that A’Y> A = A.

So there exists an orthogonal transformation
Y =A'X

such that D(Z) = A a diagonal matrix with diagonal elements A\; > Ay >
... > Xp > 0 the ordered roots of [ — AI| = 0.

3 Sample principal component

In practice the covariance matrix is usually unknown. If sample obsrevations
on a multivarite random vector is given we have to replace ¥ by an estimate of
covariance matrix ¥. Now we assume that X ~ N, (¢, ¥) where ¥ is positive
definite matrix.

Let 2% = (a1, Ta2, - - - ,xap)’, a=1,2,...,N,(N > p) be a sample of size N
from the distribution of X which is univariate normal with mean vector p and

dispersion matrix .

Let
L N N
XZNZ:BO‘ s:Z(xa—i’)(:ro‘—E)'.
a=1 a=1

The maximumlikelihood estimate of ¥ is & and that of p is x.



Theorem: The maximum likelihood estimates of ordered characteristic roots

A1, A2,..., A\, of 3 and corresponding characteristic vector aq, g, ..., q, are
, respectively the ordered characteristic roots r1,72,...,7, and characteristic
vector aj,ag,...,a, of s/N.

Proof Omitted

The estimate of total system variance is given by

p

trace (%) = Zri

1=1

and is called total sample variance. The importance of i*” principal component

is measured by
ri
P

r

=1

If the estimates of the principal components are obtained by from sample
correlation matrix
5o
R=(ry) rmj=—"1p
1/2
(sii55) "

with s = (s;;) then the total sample variance will be p = trace(R).

If first k principal components explain large amount of total sampel variance,

they may be used in place of original vector X.

Exercise

X4 0 1 21
Xo | ~ N3 01,12 5 2
X3 1 1 2 2

Obtain the first principal component and obtain the percentage of variability

explained by first principal component.



2. Let (X1, X9, X3)' is trivariate random vector with correlation matrix

1 0.8944 0.7071
0.8944 1 0.6325
0.7071 0.6325 1

Find the first principal component and obtain the percentage of variability

explained by first principal component.

3. Find principal components of the data “mtcars” in R. (Use “prcomp”

command)



