
Factor Analysis

1 Introduction

In factor analysis the observable random vector X = (X1, X2, . . . , Xp)
′ is ex-

plained in terms minimal number of unobservable(latent) random variables,

called factors. In this approach each component Xi is examined to see if it

could be generated by linear combination of unobservable random variables,

called common factors and a single variable, called specific factor variate.

The common factor will generate the covariance structure of X where specific

factor will account for for the variance of component Xi.

Some example

In a survey of household consumption, the consumption levels of p different

goods during 1 month could be observed. The variability present in the data

might be explained by the two or three main social behaviour factors of the

household. The latent factors could be basic desire for comfort or willingness

to achive certain level or family income level etc. The unobserved factors are

much more interesting to social scientist than observed quantiative measures

themshelves because they give better idea of social behaviour of the house-

holds.

In a school examination pupils obtain marks in different subjects like english,

bengali, history, geography, science and mathematics. The variability in marks

among pupils can be explained by factors like creativity, interest in science

and other unobservable factors.

Factor analysis was developed by Spearman for analysis of scores of mental
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tests.

2 The Orthogonal Factor Model

Let X = (X1, X2, . . . , Xp)
′ be an observable random vector with E(X) = µ

and dispersion matrix D(X) = Σ = (σij), a positive definite matrix. Assum-

ing each component Xi can be generated a linear combination of m(m < p)

unobservable variables, the factor analysis model can be written as

X1 = µ1 + l11f1 + l12f2 + . . .+ l1mfm + U1

X2 = µ2 + l21f1 + l22f2 + . . .+ l2mfm + U2

...
...

Xp = µp + lp1f1 + lp2f2 + . . .+ lpmfm + Up

or

X = µ+ Lf + U

where f = (f1, f2, . . . , fm)′. The vector U = (U1, U2, . . . , Up)
′ denotes the

error vector (or vector of specific factors) and L = (lij) is a p ×m matrix of

unknown coeffcients lij which is called factor loading matrix. The elements of

f is called common factors.

It is assumed that U is distributed independently of f and with mean E(U) =

0 and dispersion matrix D(U) = Ψ where Ψ is a diagonal matrix with diag-

onal elements ψ1, ψ2, . . . , ψp; var(Ui) = ψi is called specific factor variance of

Xi.

In a test each component of X is a score in a test. The corresponding compo-

nent µ is the average score of this test in the population. The elements of f

is called common factors because they are common in several different tests.

The component U is a part of test score not “explained” by the common

factors. This is considered as the made up of error in measurement plus a

specific factor.

The specification of a given component of X is similar to that in regression
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theory. Here, f plays the independent variable, is unobservable.

If f is a random vector we shall assume that

E(f) = 0 and D(f) = E(ff ′) = I,

the identity matrix. As U and f are independently distributed we have

E (Uf ′) = 0. These assumptions and relations constitute orthogonal factor

model.

So,orthogonal factor model is stated as

Orthogonal factor model with m common factors

Xp×1 = µp×1 + Lp×mfm×1 + Up×1

µi = mean of variable i

ui = ith specfic factor

fj = jth common factor

lij = loading of ith variable in jth factor

The unobservable random vectors f and U satisfy the following conditions

f and U are independently distributed.

E(f) = 0 and D(f) = I

E(U) = 0 and D(U) = Ψ where Ψ is a diagonal matrix

The orthogonal factor model implies the covariance structure for X. From the

model,

(X− µ) (X− µ)′ = (Lf + U) (Lf + U)′

= (Lf + U)
(
(Lf)′ + U′

)
= Lff ′L′ + UU′ + LfU′ + Uf ′L′
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Hence the variance covariance matrix of X is

Σ = D(X) = E (X− µ) (X− µ)′

= LE
(
ff ′
)
L′ + E

(
UU′

)
+ LE

(
fU′
)

+ E
(
Uf ′

)
L′

= LL′ + Ψ

Also, (X− µ) f ′ = (Lf + U) f ′ and hence

Cov(X, f) = LE
(
ff ′
)

+ E
(
Uf ′

)
= L

The covariance structure of X is given by

1. Σ = D(X) = LL′ + Ψ

or

V ar(Xi) = l2i1 + l2i2 + . . .+ l2im + ψi

cov(Xi, Xk) = li1lk1 + . . .+ limlkm

2. cov(Xi, fj) = lij

The portion of ith variable contributed in m common factors is called ith com-

munality. So,

h2i = l2i1 + l2i2 + . . .+ l2im

is the communality and

V ar(Xi) = σii = h2i + ψi i = 1, 2, . . . , p

The purpose of factor analysis is the determination of L with the elements of

Ψ such that

Σ−Ψ = LL′.

If the errors are small enough to be ignored we can take Σ = LL′.

3 Estimation of factor loadings

1. Principal Component method
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Let Σ have the eigen value-eigen vector pairs (λi, αi) with λ1 ≥ λ2 ≥ . . . λp ≥
0. Then

Σ = λ1α1α
′
1 + λ2α2α

′
2 + . . .+ λpαpα

′
p

=
(√

λ1α1 :
√
λ2α2 : · · · :

√
λpαp

)

√
λ1α1
√
λ2α2

...√
λpαp


This fits the prescribed covariance structure for the factor analysis having as

many factors as many variables(m = p) and ψi = 0 for all i.

If for Lp×m,

Σ = LL′ + Ψ

=
(√

λ1α1 :
√
λ2α2 : · · · :

√
λmαm

)

√
λ1α1
√
λ2α2

...
√
λmαm

+


ψ1 0 . . . 0

0 ψ2 . . . 0
...

... . . .
...

0 0 . . . ψp


where ψi = σii − l2i1 + l2i2 + . . .+ l2im for i = 1, 2, . . . , p.

For given data xα = (xα1 , x
α
2 , . . . , x

α
p ) of size N , the vector population mean µ

can be estimated by sample mean vector x̄, then we have centered observation
xα1 − x̄1
xα2 − x̄2

...

xαp − x̄p


Let S is the sample variance covariance matrix. The eigen value-eigen vector

pairs of S are (λ̂1, α̂1), (λ̂2, α̂2), · · · , (λ̂p, α̂p) with λ̂1 ≥ λ̂2 ≥ . . . λ̂p ≥ 0. Let

m < p be the number of common factors. Then the matrix of estimated factor

loadings (lij) is given by

L̃ =
(√

λ̂1α̂1 :
√
λ̂2α̂2 : · · · :

√
λ̂mα̂m

)
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The estimated specific variances are provided by the diagonal elements of the

matrix S− L̃L̃′, so

Ψ̃ =


ψ̃1 0 . . . 0

0 ψ̃2 . . . 0
...

... . . .
...

0 0 . . . ψ̃p

 with ψ̃i = sii −
m∑
j=1

l̃2ij

Communalities are estimated as

h̃2i = l̃2i1 + l̃2i2 + . . .+ l̃2im

We factor loadings lij can also be estimated from sample correlation matrix

by principal component method.

The contribution to the sample variance sii = V ar(Xi) from the first common

factor is λ̃2i1. The contribution to the total sample variance,s11 + s22 + · · · +
spp = tr(S), from the first factor is then

l̃211 + l̃221 + · · ·+ l̃2p1 =

(√
λ̂1α̂1

)′(√
λ̂1α̂1

)
= λ̂1

since the eigen vector α1 has a unit length.

proprtion of total variance due to jth factor =


λ̂j

s11+s22+...+spp
for factor analysis of S

λ̂j
p for factor analysis of R

Example In a consumer preference study, a random sample of customers

were asked to rate several attributes of a new product. The responses on

a 7 point were tabulated for 5 variables “Taste”, “Good buy for mone”,

“Flavour”,“Suitable for snack”, “Provides lots of energy” and the attribute

correlation matrix is constructed. The correlation matrix is

1 0.02 0.96 0.42 0.01

0.02 1.00 0.13 0.71 0.85

0.96 0.13 1.00 0.50 0.11

0.42 0.71 0.50 1.00 0.79

0.01 0.85 0.11 0.79 1.00


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Find the factor loading matrix with number of common factors 2 and calculate

the communality for each variable.
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