Multivariate Normal Distribution

The p.d.f. of univariate normal distribution can be written as

$$f(x) = ke^{-\frac{1}{2}\alpha(x-\beta)^2}$$
 $x \in \mathbb{R}$

where $\alpha > 0$ and k is obtained such that $\int_{-\infty}^{\infty} f(x)dx = 1$.

Now, suppose $X = (X_1, X_2, \dots, X_p)'$ be a p dimensional random vector. The multivariate normal distribution of X has an analogous form where scaler x is replaced by a vector $x = (x_1, x_2, \dots, x_p)'$, the scaler constant β is replaced a vector $b = (b_1, b_2, \dots, b_p)'$ and positive constant α is replaced by positive definite real symmetric matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \dots & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pp} \end{pmatrix}$$

The square $\alpha(x-\beta)^2 = (x-\beta)\alpha(x-\beta)$ is replaced by the quadratic form

$$(x-b)'A(x-b) = \sum_{i,j=1}^{p} a_{ij}(x_i - b_i)(x_j - b_j).$$

So, the density function of p variate normal distribution is

$$f(x_1, x_2, \dots, x_p) = Ke^{-\frac{1}{2}(x-b)'A(x-b)}$$

where K is chosen such that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_p) dx_1 dx_2 \dots dx_p = 1$$

As (x-b)'A(x-b) is positive definite, we have $f(x_1, x_2, \dots, x_p) \leq K$ that is f is bounded for all $x \in \mathbb{R}^p$.

If A is positive definite there exists a non singular matrix C such that

$$C'AC = I$$
.

Let us consider the transformation $(x_1, x_2, \dots, x_p)' \to (y_1, y_2, \dots, y_p)'$ such that

$$x - b = Cy$$
.

$$(x-b)'A(x-b) = y'C'ACy = y'y.$$

The jacobian of the transformation is $J = \mod |C| = \text{absolute value of the determinant } C$.

Thus

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} Ke^{-\frac{1}{2}(x-b)'A(x-b)} dx_1 dx_2 \dots dx_p = 1$$

$$\Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} Ke^{-\frac{1}{2}y'y} \mod |C| dy_1 dy_2 \dots dy_p = 1$$

$$\Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} Ke^{-\frac{1}{2}\sum_{i=1}^{p} y_i^2} \mod |C| dy_1 dy_2 \dots dy_p = 1$$

$$\Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} K \mod |C| \prod_{i=1}^{p} e^{-\frac{1}{2}y_i^2} dy_1 dy_2 \dots dy_p = 1$$

$$\Rightarrow K \mod |C| \int_{-\infty}^{\infty} e^{-\frac{1}{2}y_1^2} dy_1 \int_{-\infty}^{\infty} e^{-\frac{1}{2}y_2^2} dy_2 \dots \int_{-\infty}^{\infty} e^{-\frac{1}{2}y_p^2} dy_p = 1$$

$$\Rightarrow K \mod |C| \left(\sqrt{2\pi}\right)^p = 1$$

Now, $|C'| \cdot |A| \cdot |C| = 1$, hence $|C| = 1/\sqrt{|A|}$, so

$$K = \frac{\sqrt{|A|}}{(2\pi)^{p/2}}$$

So, the probability density function of multivariate normal distribution is

$$\frac{\sqrt{|A|}}{(2\pi)^{p/2}}e^{-\frac{1}{2}(x-b)'A(x-b)}$$

Now we want to write b and |A| in terms of moments. We define

$$\mu = E(X) = (E(X_1), E(X_2), \dots, E(X_p))' = (\mu_1, \mu_2, \dots, \mu_p)'$$

is the mean vector of X and

$$D(X) = \Sigma = E(X - \mu)(X - \mu)' = E(XX') - \mu\mu'$$

is variance - covariance matrix.

The transformation gives X = CY + b. Now Y_1, Y_2, \ldots, Y_p are i.i.d. normal random variable with $E(Y_i) = 0$ and $V(Y_i) = 1$ for all $i = 1, 2, \ldots, p$. That gives $E(Y) = (0, 0, \ldots, 0)'$ and hence $\mu = E(X) = b$. Again the variance covraiance matrix

$$E(YY') = I_p.$$

Thus

$$E(X - \mu)(X - \mu)' = CIC' = CC'.$$

Now, as C'AC = I we get $A = (C')^{-1}C^{-1}$ by multiplication of $(C')^{-1}$ on the left and C^{-1} on the right. So,

$$CC' = A^{-1}$$

So, the variance-covariance matrix of X is

$$\Sigma = E(X - \mu)(X - \mu)' = A^{-1}.$$

Here Σ is positive definite.

We can summarize as follows, given a vector $\mu = (\mu_1, \mu_2, \dots, \mu_p)'$ and positive definite matrix Σ there exists random vector $X = (X_1, X_2, \dots, X_p)'$ that follows multivariate normal distribution with density function

$$f(x_1, x_2, \dots, x_p) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)}$$

with $x = (x_1, x_2, ..., x_p)' \in \mathbb{R}^p$.

Exercises:

1. Derive the p.d.f. of bivariate normal random vector $X = (X_1, X_2)'$ with mean vector $(\mu_1, \mu_2)'$ and variance-covariance matrix

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

2. Let us consider the following densities

(a)
$$\frac{1}{2\pi} \exp\left[-\frac{1}{2}(x^2+y^2+4x-6y+13)\right]$$

(b)
$$\frac{1}{2\pi} \exp\left[-\frac{1}{2}(2x^2+y^2+2xy-22x-14y+65)\right]$$

obtain b and A. Also find C such that CAC' = I

Theorem 1: Let **X** be *p* component random vector with $\mathbf{X} \sim N_p(\mu, \Sigma)$. Then

$$\mathbf{Y} = C\mathbf{X}$$

is distributed according to $N_p(C\mu, C\Sigma C')$ for C non singular.

Proof: The transformation $\mathbf{Y} = C\mathbf{X}$ gives

$$x = C^{-1}y$$

So, the jacobian of the transformation is

$$\mod |C^{-1}| = \frac{1}{\mod |C|} = \sqrt{\frac{1}{|C||C'|}} = \sqrt{\frac{|\Sigma|}{|C|\cdot|\Sigma|\cdot|C'|}} = \sqrt{\frac{|\Sigma|}{|C\Sigma C'|}}$$

The quadrattic component of $N_p(\mu, \Sigma)$ is

$$Q = (x - \mu)' \Sigma^{-1} (x - \mu)$$

The transformation $x = C^{-1}y$ gives

$$Q = (C^{-1}y - \mu)'\Sigma^{-1}(C^{-1}y - \mu)$$

$$= (C^{-1}y - CC^{-1}\mu)'\Sigma^{-1}(C^{-1}y - CC^{-1}\mu)$$

$$= [(C^{-1})(y - C\mu)]'\Sigma^{-1}[C^{-1}(y - C\mu)]$$

$$= (y - C\mu)'(C^{-1})'\Sigma^{-1}C^{-1}(y - C\mu)$$

$$= (y - C\mu)'(C\Sigma C')^{-1}(y - C\mu)$$

since $(C')^{-1} = (C^{-1})'$.

Thus the density of \mathbf{Y} is

$$\frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}}e^{-\frac{1}{2}(C^{-1}y-\mu)'\Sigma^{-1}(C^{-1}y-\mu)}\mod |C^{-1}| = \frac{1}{(2\pi)^{\frac{p}{2}}|C\Sigma C'|^{\frac{1}{2}}}e^{-\frac{1}{2}(y-C\mu)'(C\Sigma C')^{-1}(y-C\mu)}$$

Exercise: 1. Let $\mathbf{Y} = C\mathbf{X} + b$ where C is $p \times p$ non singular matrix and b is $p \times 1$ vector. Obtain the distribution of \mathbf{Y} if $\mathbf{X} \sim N_p(\mu, \mathbf{\Sigma})$. Show that $\mathbf{Y} \sim N_p(C\mu + b, C\mathbf{\Sigma}C')$.

2. Show that if Σ is positive definite then Σ^{-1} is also positive definite.

Marginal and Conditional Distribution

Let $\mathbf{X}^{p\times 1}$ be random vector which follows a p dimensional multivariate normal $N_p(\mu, \Sigma)$. Let \mathbf{X} be partitioned as

$$\mathbf{X} = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix} \quad \text{where} \quad X^{(1)} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_q \end{pmatrix} \quad \text{and} \quad X^{(2)} = \begin{pmatrix} X_{q+1} \\ X_{q+2} \\ \vdots \\ X_p \end{pmatrix}$$

We assume X is p-variate normal with mean vector

$$\mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix}$$

and variance covariance matrix

$$\mathbf{\Sigma} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

where $\Sigma_{21} = \Sigma'_{12}$. Here

$$E(X^{(1)}) = \mu^{(1)}$$
 and $E(X^{(2)}) = \mu^{(2)}$

and

$$E\left(X^{(1)} - \mu^{(1)}\right) \left(X^{(1)} - \mu^{(1)}\right)' = \Sigma_{11}$$

$$E\left(X^{(1)} - \mu^{(1)}\right) \left(X^{(2)} - \mu^{(2)}\right)' = \Sigma_{12}$$

$$E\left(X^{(2)} - \mu^{(2)}\right) \left(X^{(2)} - \mu^{(2)}\right)' = \Sigma_{22}$$

Theorem 2 $X^{(1)}$ and $X^{(2)}$ are independently if $\Sigma_{12} = \Sigma'_{21} = \mathbf{0}$.

Under the given condition

$$oldsymbol{\Sigma} = egin{pmatrix} \Sigma_{11} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{pmatrix}.$$

Its inverse is

$$\boldsymbol{\Sigma}^{-1} = \begin{pmatrix} \Sigma_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22}^{-1} \end{pmatrix}.$$

The quadratic form is

$$Q = (x - \mu)' \Sigma^{-1} (x - \mu)$$

$$= \left[(x^{(1)} - \mu^{(1)})', (x^{(2)} - \mu^{(2)})' \right] \begin{pmatrix} \Sigma_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} x^{(1)} - \mu^{(1)} \\ x^{(2)} - \mu^{(2)} \end{pmatrix}$$

$$= \left(x^{(1)} - \mu^{(1)} \right)' \Sigma_{11}^{-1} \left(x^{(1)} - \mu^{(1)} \right) + \left(x^{(2)} - \mu^{(2)} \right)' \Sigma_{22}^{-1} \left(x^{(2)} - \mu^{(2)} \right)$$

$$= Q_1 + Q_2$$

where
$$Q_1 = (x^{(1)} - \mu^{(1)})' \Sigma_{11}^{-1} (x^{(1)} - \mu^{(1)})$$
 and $Q_2 = (x^{(2)} - \mu^{(2)})' \Sigma_{22}^{-1} (x^{(2)} - \mu^{(2)})$.

Also we note that $|\Sigma| = |\Sigma_{11}| \cdot |\Sigma_{22}|$.

The pdf of X is

$$f(x|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}Q}$$

$$= \frac{1}{(2\pi)^{\frac{q}{2}}|\Sigma_{11}|^{\frac{1}{2}}} e^{-\frac{1}{2}Q_1} \cdot \frac{1}{(2\pi)^{\frac{p-q}{2}}|\Sigma_{22}|^{\frac{1}{2}}} e^{-\frac{1}{2}Q_2}$$

$$= f_1(x^{(1)}|\mu^{(1)}, \Sigma_{11}) \cdot f_2(x^{(2)}|\mu^{(2)}, \Sigma_{22})$$

So, marginal distribution of $X^{(1)}$ is $N_q(\mu^{(1)}, \Sigma_{11})$ and marginal distribution of $X^{(2)}$ is $N_{p-q}(\mu^{(2)}, \Sigma_{22})$.

Let us consider the linear transformation

$$Y = \begin{pmatrix} Y^{(1)} \\ Y^{(2)} \end{pmatrix} = \begin{pmatrix} I_q & -B \\ 0 & I_{p-q} \end{pmatrix} \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix} = CX$$

If $X \sim N_p(\mu, \Sigma)$, then by Theorem 1, $Y \sim N_p(C\mu, C\Sigma C')$ where

$$C\mu = \begin{pmatrix} \mu^{(1)} - B\mu^{(2)} \\ \mu^{(2)} \end{pmatrix}$$

and

$$C\Sigma C' = \begin{pmatrix} \Sigma_{11} + B\Sigma_{22}B' - B\Sigma_{21} - \Sigma_{12}B' & \Sigma_{12} - B\Sigma_{22} \\ \Sigma_{12} - B\Sigma_{22} & \Sigma_{22} \end{pmatrix}$$

As Σ is non-singular both Σ_{11}^{-1} and Σ_{22}^{-1} exists. If B is chosen such that $\Sigma_{12} - B\Sigma_{22} = 0$ that is if

$$B = \Sigma_{12} \Sigma_{22}^{-1}$$

then $Y^{(1)}$ and $Y^{(2)}$ are uncorrelated and thus independent.

We have

$$\begin{pmatrix} Y^{(1)} \\ Y^{(2)} \end{pmatrix} = \begin{pmatrix} X^{(1)} - \Sigma_{12} \Sigma_{22}^{-1} X^{(2)} \\ X^{(2)} \end{pmatrix} \sim N_p \begin{pmatrix} \nu_{1,2} \\ \mu^{(2)} \end{pmatrix}, \begin{pmatrix} \Sigma_{11,2} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{pmatrix} \end{pmatrix}$$

where

$$\nu_{1,2} = \mu^{(1)} - \Sigma_{12} \Sigma_{22}^{-1} \mu^{(2)}$$

and

$$\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Since, $X^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}X^{(2)}$ and $X^{(2)}$ are independent, the marginal densities are

$$g\left(x^{(1)}|x^{(2)}\right) = \frac{1}{(2\pi)^{\frac{q}{2}}|\Sigma_{11,2}|^{\frac{1}{2}}} e^{-\frac{1}{2}(x^{(1)}-\nu_{1,2})'\Sigma_{11,2}^{-1}(x^{(1)}-\nu_{1,2})}$$

and

$$f_2(x^{(2)}) = \frac{1}{(2\pi)^{\frac{p-q}{2}} |\Sigma_{22}|^{\frac{1}{2}}} e^{-\frac{1}{2}(x^{(2)} - \mu^{(2)})' \Sigma_{22}^{-1}(x^{(2)} - \mu^{(2)})}$$

So, using linear transformation we can rewrite the joint density of $X = (X^{(1)}, X^{(2)})'$ as

$$f(x|\mu,\Sigma) = g\left(x^{(1)}|x^{(2)}\right)f_2(x^{(2)})$$

But

$$f(x^{(1)}, x^{(2)}|\mu, \Sigma) = f_{1|2}\left(x^{(1)}|x^{(2)}\right) f_2(x^{(2)})$$

where $f_{1|2}\left(x^{(1)}|x^{(2)}\right)$ is the conditional density function of $X^{(1)}$ given $X^{(2)}$. So, conditional density of $X^{(1)}$ given $X^{(2)}=X^{(2)}$ must be $g\left(x^{(1)}|x^{(2)}\right)$. Since the quadratic form of $g\left(x^{(1)}|x^{(2)}\right)$ can be written as

$$Q(x^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}x^{(2)}; \nu_{1.2}, \Sigma_{11.2}) = \left(x^{(1)} - \mu_{1.2}\right)' \Sigma_{11.2} \left(x^{(1)} - \mu_{1.2}\right)$$

where

$$\mu_{1.2} = \mu^{(1)} + \Sigma_{12} \Sigma_{22}^{-1} (x^{(2)} - \mu^{(2)})$$

and

$$\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$$

So,

$$X^{(1)}|X^{(2)} \sim N_q \left(\mu^{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(x^{(2)} - \mu^{(2)}), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right)$$

Exercise Obtain the conditional density of $X^{(2)}$ given $X^{(1)}$

Moment Generating function

The moment generating function of $\mathbf{X}^{p\times 1}$ distributed according as $N_p(\mu, \Sigma)$ is

$$M_{\mathbf{X}}(t) = \exp\left\{t'\mu + \frac{1}{2}t'\Sigma t\right\}$$

We have

$$M_{\mathbf{X}}(t) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu) + t'x} dx_1 dx_2 \dots dx_p$$

Let $y = x - \mu$, we obtain

$$M_X(t) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} e^{t'\mu} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}y'\Sigma^{-1}y + t'y} dy$$

Since Σ is positive definite, so Σ^{-1} is also positive definite. Hence $\Sigma^{-1}=H'H$ for some non singular matrix H. Then $|H|^2=\frac{1}{|\Sigma|}$. Let us consider the transformation z=Hy. The jacobian of the transformation $\frac{1}{|H|}=|\Sigma|^{\frac{1}{2}}$. So, $dy=|\Sigma|^{\frac{1}{2}}dz$. So,

$$M_{\mathbf{X}}(t) = \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{t'\mu} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}y'H'Hy+t'y} dy$$

$$= \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{t'\mu} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}z'z+t'H^{-1}z} |\Sigma|^{\frac{1}{2}} dz$$

$$= \frac{1}{(2\pi)^{\frac{p}{2}}} e^{t'\mu} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}\sum_{i=1}^{p} (z_{i}^{2}-2b_{i}z_{i})} dz$$

where $b' = (b_1, b_2, \dots, b_p) = t'H^{-1}$. So,

$$M_{\mathbf{X}}(t) = \frac{1}{(2\pi)^{\frac{p}{2}}} e^{t'\mu + \frac{1}{2}b'b} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}\sum_{i=1}^{p} (z_i - b_i)^2} dz$$

$$= \exp\left\{t'\mu + \frac{1}{2}b'b\right\}$$

$$= \exp\left\{t'\mu + \frac{1}{2}t'H^{-1}(H')^{-1}t\right\}$$

$$= \exp\left\{t'\mu + \frac{1}{2}t'(H'H)^{-1}t\right\}$$

$$= \exp\left\{t'\mu + \frac{1}{2}t'\Sigma t\right\}$$

Theorem If $X \sim N_p(\mu, \Sigma)$ then the linear combination l'X follows univariate normal given by $l'X \sim N(l'\mu, l'\Sigma l)$ where $l' = (l_1, l_2, \dots, l_p)$.

Proof: Left as an exercise. Use moment generating function.

Theorem: If $\mathbf{X} \sim N_p(\mu, \mathbf{\Sigma})$ and $\mathbf{Y} = \mathbf{C}\mathbf{X} + \mathbf{b}$ where C is any given $q \times p$ real matrix with $Rank(C) = q \leq p$ and \mathbf{b} is any $q \times 1$ vector, then $\mathbf{Y} \sim N_q(\mathbf{C}\mu + \mathbf{b}, \mathbf{C}\mathbf{\Sigma}\mathbf{C}')$.

Proof: Let us consider the transformation

$$\mathbf{Y}^* = egin{pmatrix} \mathbf{Y}_1 \ \mathbf{Y}_2 \end{pmatrix} = egin{pmatrix} \mathbf{C} \ \mathbf{B} \end{pmatrix} \mathbf{X} + egin{pmatrix} \mathbf{b} \ \mathbf{0}_{p-q} \end{pmatrix}$$

where **B** is any $(p-q) \times p$ matrix. Then

$$egin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix} \sim N_p \left(egin{pmatrix} \mathbf{C} \mu + \mathbf{b} \\ \mathbf{B} \end{pmatrix}, egin{pmatrix} \mathbf{C} \Sigma \mathbf{C}' & \mathbf{C} \Sigma \mathbf{B}' \\ \mathbf{B} \Sigma \mathbf{C}' & \mathbf{B} \Sigma \mathbf{B}' \end{pmatrix}
ight)$$

Then $\mathbf{Y} = \mathbf{Y}_1 = \mathbf{C}\mathbf{X} + \mathbf{b} \sim N_q (\mathbf{C}\mu + \mathbf{b}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}')$.

Theorem: If $\mathbf{X} \sim N_p(\mu, \Sigma)$, then

$$(\mathbf{X} - \mu)' \Sigma^{-1} (\mathbf{X} - \mu) \sim \chi_p^2$$

Proof: As Σ^{-1} is positive definite we have $\Sigma^{-1} = H'H$ for some non singular matrix H. Let $\mathbf{Z} = H(\mathbf{X} - \mu)$. Then jacobian of the transformation is $|\mathbf{J}| = \frac{1}{|H|} = |\mathbf{\Sigma}|^{\frac{1}{2}}$. The joint pdf of $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_p)'$ is

$$f(z) = \frac{1}{(2\pi)^{\frac{p}{2}}} \exp\left\{-\frac{1}{2}z'z\right\} = \frac{1}{(2\pi)^{\frac{p}{2}}} \exp\left\{-\frac{1}{2}\sum_{i=1}^{p} z_i^2\right\}$$

So, $\mathbf{Z}_i \sim N(0,1)$ for all $i = 1, 2, \dots, p$. Hence

$$(\mathbf{X} - \mu)' \Sigma^{-1} (\mathbf{X} - \mu) = \mathbf{Z}' \mathbf{Z} \sim \chi_p^2$$

Regression and Correlation

Let $\mathbf{X}^{p\times 1}$ be random vector which follows a p dimensional multivariate normal $N_p(\mu, \Sigma)$. Let \mathbf{X} be partitioned as

$$\mathbf{X} = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix} \quad \text{where} \quad X^{(1)} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_q \end{pmatrix} \quad \text{and} \quad X^{(2)} = \begin{pmatrix} X_{q+1} \\ X_{q+2} \\ \vdots \\ X_p \end{pmatrix}$$

We assume X is p-variate normal with mean vector

$$\mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix}$$

and variance covariance matrix

$$oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix}$$

where $\Sigma_{21} = \Sigma'_{12}$.

Then conditional distribution of $\mathbf{X}^{(1)}$ given $\mathbf{X}^{(2)}$ is given by ,

$$\mathbf{X}^{(1)}|\mathbf{X}^{(2)} \sim N_q(\mu_{1.2}, \mathbf{\Sigma}_{11.2})$$

where $\mu_{1.2} = \mu^{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(x^{(2)} - \mu^{(2)})$ and $\boldsymbol{\Sigma}_{11.2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$.

Then
$$\mathbf{E}\left(\mathbf{X}^{(1)}|\mathbf{X}^{(2)}\right) = \mu^{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(x^{(2)} - \mu^{(2)})$$
.

Definition: The matrix $\mathbf{B} = \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1}$ is the matrix of regression coefficients of $\mathbf{X}^{(1)}$ on $\mathbf{x}^{(2)}$.

The element in the *ith* row and (k-q)th column of $\mathbf{B} = \Sigma_{12}\Sigma_{22}^{-1}$ is denoted by

$$\beta_{ik,q+1...k-1,k+1,...p}, \qquad i = 1, 2, ..., q, k = q+1, ..., p$$

The vector $\mu^{(1)} + \mathbf{B} \left(\mathbf{x}^{(2)} - \mu^{(2)} \right)$ is called regression function.

Let $\sigma_{ij,q+1...p}$ is the i,jth element of $\Sigma_{11.2}$.

Definition:

$$\rho_{ij,q+1...p} = \frac{\sigma_{ij,q+1...p}}{\sqrt{\sigma_{ii,q+1...p}}\sqrt{\sigma_{jj,q+1...p}}} \qquad i,j=1,2,\ldots,q$$

is the partial correlation between X_i and X_j holding X_{q+1}, \ldots, X_p fixed.

Let $\sigma'_{(i)}$ is the *i*th row of Σ_{12} and $\beta'_{(i)}$ is the *i*th row of **B** that is $\beta'_{(i)} = \sigma'_{(i)} \Sigma_{22}^{-1}$.

Definition

The correlation between X_i and $\beta'_{(i)}\mathbf{X}^{(2)}$ is called multiple correlation between X_i and $\mathbf{X}^{(2)}$.

It can be shown that multiple correlation between X_i and $\mathbf{X}^{(2)}$ is

$$\bar{R}_{i.q+1...p} = \left(\frac{\sigma'_{(i)} \Sigma_{22}^{-1} \sigma_{(i)}}{\sigma_{ii}}\right)^{\frac{1}{2}}$$

Tests of Hypotheses for partial correlation coefficients

Let $r_{ij,q+1...p}$ is the sample partial correlation coefficient based on a sample of size N from a p dimensional multivariate normal distribution with population partial correlation coefficient $\rho_{ij,q+1...p}$.

To test $H_0: \rho_{ij,q+1...p} = \rho_0$ against two test alternatives we can use Fisher's z for an approximate test based on large sample size N. Let

$$z = \frac{1}{2} \ln \frac{1 + r_{ij,q+1\dots p}}{1 - r_{ij,q+1\dots p}}$$

and

$$\zeta_0 = \frac{1}{2} \ln \frac{1 + \rho_0}{1 - \rho_0}.$$

Then H_0 is rejected if

$$|\sqrt{N - (p - q) - 3}(z - \zeta_0)| > \tau_{\alpha/2}$$

where τ_{α} is $100\alpha\%$ percentile point of standard normal distribution.

Test of Hypotheses for multiple correlation coeffcient

Let R be the sample correlation coefficient between $\mathbf{X_1}$ and $\mathbf{X}^{(2)} = (X_2, X_3, \dots, X_p)$ based on a sample of size N from $N(\mu, \Sigma)$. If the population multiple correlation coefficient $\bar{R} = 0$ then $\left[\frac{R^2}{1-R^2}\right] \left[\frac{N-p}{p-1}\right]$ is distributed as F with p-1 and N-p degrees of freedom.

To test $H_0: \bar{R} = 0$, we use the critical region

$$\frac{R^2}{1 - R^2} \frac{N - p}{p - 1} > F_{\alpha, p - 1, N - p}$$

where $F_{\alpha,p-1,N-p}$ is the upper α significance point corresponding to α significance level.