Multivariate Normal Distribution

The p.d.f. of univariate normal distribution can be written as
f(z) = ke~ 20(@=A)’ reR

where a > 0 and k is obtained such that [ f(z)dz = 1.

—00

Now, suppose X = (Xi, Xa,...,X,) be a p dimensional random vector. The
multivariate normal distribution of X has an analogous form where scaler x
is replaced by a vector = (x1,2,...,2,)’, the scaler constant J is replaced
a vector b = (by,ba,...,by)" and positive constant « is replaced by positive

definite real symmetric matrix

aip a2 ... Gip

asr a2 ... agp
A=

ap1r Ap2 ... Gpp

The square a(z — 8)% = (x — B)a(x — ) is replaced by the quadratic form

P
(x—b)A(w —b) = Y aij(zi — bi)(x; — by).
i,j=1
So, the density function of p variate normal distribution is

f(xl, x9,. .. ,xp) = K@*%(x*b)lA(I*b)

where K is chosen such that

//.-'/f(:vl,:cg,...,xp)dxldxg...da;p:1

—00 —O0



As (x — b)'A(x — b) is positive definite, we have f(z1,z2,...,z,) < K that is
f is bounded for all z € R?.

If A is positive definite there exists a non singular matrix C' such that

C'AC =1.
Let us consider the transformation (z1,z2,...,2p) — (y1,%2,-..,Yp)" such
that
x—b=Cy.
(x —b)A(x —b) =/ C"ACy = o/y.
The jacobian of the transformation is J = mod |C| = absolute value of the

determinant C.

Thus
0o o o
//.../Ke_é(x_b)/A(w_b)dmldI'Q...dl‘p =1
—00 —00 —o0
0o oo 0o
:>//.../Ke—§y'y mod |Cldyidys ... dy, = 1
—00 —00 —00
T Ty
:>//.../Ke = mod |Cldyidys ... dy, = 1
—00 —0O0 —0oQ
oo 00 o0 P
Jod i=1
o] o o0
= K mod ’C|/e%y%dy1/eéygdy2/E%ygdyp = 1
— 50 —0o0 —o0

= K. mod |C] <\/ﬂ>p =1



Now, |C'] - |A] - |C| =1, hence |C| =1//]4|, so

A

(27)P/2

So, the probability density function of multivariate normal distribution is

VIAl
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(27)P/2

z—b)’ A(z—b)

Now we want to write b and |A| in terms of moments. We define
p=E(X)=(EX1),E(X),....,B(Xp)) = (1, pi2, -, 1)’
is the mean vector of X and
D(X) =% = B(X — p)(X — )/ = BE(XX") — iyt

is variance - covariance matrix.

The transformation gives X = CY 4 b. Now Y1, Ys,...,Y), are i.i.d. normal
random variable with E(Y;) = 0 and V(Y;) =1 for all i = 1,2,...,p. That
gives E(Y) = (0,0,...,0)" and hence p = E(X) = b. Again the variance
covraiance matrix

EYY') =1,

Thus
E(X —p)(X —p) =CIC" =CC".

Now, as C'AC = I we get A = (C')~1C~! by multiplication of (C’)~! on the
left and C~! on the right. So,

CcC' = A1

So, the variance-covariance matrix of X is

S = B(X - p)(X — ) = A7



Here X is positive definite.

We can summarize as follows, given a vector u = (1, g2, ..., pp) and posi-
tive definite matrix ¥ there exists random vector X = (X1, X»,...,X,) that

follows multivariate normal distribution with density function

1

aEEEe T
i

flz1,22,...,2p) =
with x = (21, 22,...,2,) € RP.

FExercises:

1. Derive the p.d.f. of bivariate normal random vector X = (X7, X)" with

mean vector (u1, u2) and variance-covariance matrix

¥ O'% pPoO102
pPo102 J%

2. Let us consider the following densities

(a) % exp[—%(a:2 +y? + 4z — 6y + 13)]
(b) o exp[—3(22% + y? + 22y — 222 — 14y + 65)]
obtain b and A. Also find C such that CAC' =1

Theorem 1: Let X be p component random vector with X ~ N,(u, X).
Then
Y =CX

is distributed according to N,(Cu, CXC") for C non singular.

Proof: The transformation Y = CX gives

z=C"ly



So, the jacobian of the transformation is
] 1 I = =
dlc7 1 = = = =
mod [ = = sd 0] \/ tell[ed ¢ T 151 1C] \/ [eter

The quadrattic component of Ny(u, X) is

Q=(x—p)'S (z—p

The transformation z = C~y gives
Cly—p)S™HC Yy —p)
Cly—CcClpys I (Cly —CC ')

Q = (
(

= [(c Yy -cw]' st [eHy - Cw)
(
(

y—Cp)(CHYS'C y - Cp)
y—Cp)'(CEC") "y — Cp)

since (C")~1 = (C~1Y.
Thus the density of Y is

1 e 2@y ETHOT ) oq |07 = 1 e~ 3 (=Cn)(CEC") ! (y=Cp)

(27) 2|32 (2m)5|C=C)2
Exercise: 1. Let Y = CX 4 b where C is p X p non singular matrix and b

is p x 1 vector. Obtain the distribution of Y if X ~ Np(u,X). Show that
Y ~ N,(Cp+b,CEC).

2. Show that if 3 is positive definite then 37! is also positive definite.



Marginal and Conditional Distribution

Let XP*! be random vector which follows a p dimensional multivariate normal

Np(p, ). Let X be partitioned as

X4 Xg+1

x (1) X X
X= (X(2)> where X = ‘2 and X® = q‘+2
Xq Xp

We assume X is p-variate normal with mean vector

N (MD)
M(Q)
and variance covariance matrix
> PN
5 11 12
Yo1 2o

E(XWD) =M and EX®) =3

where ¥o; = ¥,. Here

and
/

E (X(l) _ M(l)) (X(l) B #(1)>
B (X0 - u®) (x -

E <X<2> _ M(z)) (X<2> _ M(m)’ — S

X1

/

212

Theorem 2 X and X® are independently if X1, = ¥, = 0.

Under the given condition

Its inverse is



The quadratic form is
Q = (@—px@—p)
w1 0 2@ — ()
- [(55(1) - M(l))/, (95(2) - H(2))/} ! -1 2 2
0 X @ — ;@

_ (xu) _ Iu(l))lzil <$(1> _ Mu)) n <x<2> _ M@))’g;; (x@) _ M”)
= Q1+ Q2

where Ql = (x(l) — /1’(1))/21711 ($(1) — /“L(l)) and Q2 = (x(Q) — ,LL(Q))/ 2521 (x(2) — /1’(2))

Also we note that |X| = [X11] - [Xoa].
The pdf of X is
1 _1
fp%) = —p—e 3¢
2

(2m)3 |23

_ ql o3 1 ~1Q,
(2m)2 2112

= filaW]pMS11) - fo(z@|pu®), S9)

So, marginal distribution of X is Nq(,u(l), ¥11) and marginal distribution of
X is Np_o(u@, Sa9).

Let us consider the linear transformation
y® I, —B)\ [x®
Y = =1 =CX
v (2) 0 I, x(2)

If X ~ Np(p,X), then by Theorem 1, Y ~ N,(Cp, CEC") where

(1) _ g,
1 j
Cu=
( pul? >

CEC/ o (Ell + BZ22B, - 3221 - 2123/ 212 — BZQQ)

and

Y12 — BXoo Y29



As ¥ is non -singular both Eil and 2521 exists. If B is chosen such that
Y19 — BY99 = 0 that is if
B =Y15%5)

then YY) and Y@ are uncorrelated and thus independent.

We have
(Y(1)> B (X(l) —21222_21)((2)) N ((Vm) <211.2 0 ))
ye )~ X® A®) 7o oy
where
vip=pt — 21222_21N(2)
and

Y112 =11 — 212555 o1

Since, X1 — 2122521)((2) and X @ are independent, the marginal densities

are
g (x(l)‘l“(2)> - %67%(z(l)*V1v2)/21_11.2(95(1)*1’1.2)
(2m)2 (X122
and
fo(z?) = 4;)7& — ¢ 3 (2 —u®) 5! (2 @)
(2m) 2 [Sgof2

So, using linear transformation we can rewrite the joint density of X =
(XM, X)) as
faln, ) = g (2V]2?) fofa®)
But
F@,2018,3) = fip (:V]2) foa®)
where fi (:U(l)\x@)) is the conditional density function of X1 given X2,
So, conditional density of X given X = X must be ¢ (x(l)]ac@)). Since

the quadratic form of g (a:(l)|x(2)) can be written as

!
Q(zW) — E1222_2190(2); V12,%11.2) = (il?(l) - M1.2> Y12 (96(1) - M1.2>

where



and
Yo = Y11 — 212855 Yot

So,

X(U‘X(Z) ~ Nq (u(l) + 21222_21 (.73(2) — /11(2))7 Y11 — Z1222_21221>

Ezercise Obtain the conditional density of X?) given X (1)
Moment Generating function

The moment generating function of XP*! distributed according as Np(u, X)
is
1
Mx (t) = exp {t/,u + 2t’2t}

We have

1 oo o0 o0 . )
Mx(t) = —5— / / / e~ B S e g g
eniz:z) ) )

Let y = x — u, we obtain

Since ¥ is positive definite, so 7! is also positive definite. Hence ¥~! = H'H

for some non singular matrix H. Then |H|? = ﬁ Let us consider the
tranformation z = Hy. The jacobian of the transformation ﬁ = |E|% So
dy = \2|%dz. So,
oo o oo
1 / ! !/ /
Mx(t) = etu/ / / Yy g,
eofisE )
(2m !E\

(e 9]

1p 2
,,z —2b;z;
[
)2




where b’ = (by,ba,...,b,) = t'H~!. So,

1 T T i SEeny
’ ’ -3 2;—04
Mx(t) = (2);2;€tu+ébb/ //6 = dz
T —00 —00 —0o0

/ 1,
= exp tu—i—bb}

Theorem If X ~ N,(x,X) then the linear combination I’X follows univariate
normal given by I'X ~ N(I'ps, I'Sl) where I = (1,12, ..., 1).

Proof: Left as an exercise. Use moment generating function.

Theorem: If X ~ N,(y,¥) and Y = CX + b where C is any given
g % p real matrix with Rank(C) = ¢ < p and b is any ¢ x 1 vector , then
Y ~ N,(Cp + b, CEC).

Proof: Let us consider the transformation
Y, C b
Y* = = X+
Y, B 0,_q
where B is any (p — ¢) X p matrix. Then
Y, N Cu+b CcCxC’ CxB
Y, g B /) \BXC BXZB
Then Y = Y; = CX + b ~ N, (Cp+ b, CZC)).
Theorem: If X ~ N, (¢, X), then

(X —p)/S (X —p)~x;

10



Proof: As X! is positive definite we have ¥~' = H’H for some non singular
matrix H. Let Z = H(X — p). Then jacobian of the transformation is
13| = & = |=|2. The joint pdf of Z = (Zy, Zo, . .., Zp)’ is

1
[H|
1 1 1 1L
fz) = exp{—z/z} = ——Fexpy —= 22
) (2m)2 2 (2m)2 2; '
So, Z; ~ N(0,1) for all i =1,2,...,p. Hence

X-p)S (X —p)=2Z'Z~x;

Regression and Correlation

Let XP*! be random vector which follows a p dimensional multivariate normal
Np(p, X). Let X be partitioned as

X1 Xgt1

x (1) X X
X = (X(2)> where X = .2 and X®@ = q‘+2
Xq Xp

We assume X is p-variate normal with mean vector

. (Ml))
M(Q)
and variance covariance matrix
by by
5 — 11 12
o1 Yoo

Then conditional distribution of X given X2 is given by ,

/
where 391 = X7,.

XWIX@ ~ N (p12,B11.2)
where 115 = pV) + 21555, (2@ — p?)) and 110 = 1 — B35, T
Then E (XW|X®)) = @) + 51555 (2@ — 12y
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Definition: The matrix B = 2122521 is the matrix of regression coeffcients
of XM on x(2).

The element in the ith row and (k — g)th column of B = 31,35, is denoted
by
/Bik.q+1...k71,k+1,...p7 1= 17 27 - q, k= q+ 17 Y

The vector () + B (X(Q) — u@)) is called regression function.

Let 04j.g+1..p is the 4, jth element of 311 2.
Definition:

Oij.q41l..p
VOiig+1..p\/Tjjq+1..p

is the partial correlation between X; and X; holding Xqy1,...,X, fized.

Pij.q+1..p = Za] = 1> 27 -5 q

Let o/

) is the ¢th row of X195 and ﬁ{i) is the ¢th row of B that is BEZ.) = O'EZ-)E2_21.

Definition
The correlation between X; and ﬁzi)X@) is called multiple correlation between
X; and X(?),

It can be shown that multiple correlation between X; and X2 is

1
_ U,i 22_210(i) 2
Ri.q+1...p - <()

O
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Tests of Hypotheses for partial correlation coefficients

Let 7ij.4+1..p is the sample partial correlation coefficient based on a sample of
size N from a p dimensional multivariate normal distribution with population

partial correlation coefficient p;j.¢41..p-

To test Ho : pij.q+1..p = po against two test alternatives we can use Fisher’s z

for an approximate test based on large sample size N. Let

1. T+7ige1.p

z=—1In
2 1—rijgrp
and
1. 1+ po
=-1
Go=gln— p”

Then Hj is rejected if

VN = (p—q) —3(z — C)| > Tayo

where 7, is 100a% percentile point of standard normal distribution.
Test of Hypotheses for multiple correlation coeffcient

Let R be the sample correlation coefficient between X; and X = (X2, X3,..., X))
based on a sample of size N from N(u,X). If the population multiple corre-

lation coefficient R = 0 then L f;} [%} is distributed as F' with p—1 and

N — p degrees of freedom.

To test Hy : R = 0, we use the critical region

R> N-—p

where F, ,_1 nv—p is the upper « significance point corresponding to o signif-

icance level.
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