
Multivariate Normal Distribution

The p.d.f. of univariate normal distribution can be written as

f(x) = ke−
1
2
α(x−β)2 x ∈ R

where α > 0 and k is obtained such that
∞∫
−∞

f(x)dx = 1.

Now, suppose X = (X1, X2, . . . , Xp)
′ be a p dimensional random vector. The

multivariate normal distribution of X has an analogous form where scaler x

is replaced by a vector x = (x1, x2, . . . , xp)
′, the scaler constant β is replaced

a vector b = (b1, b2, . . . , bp)
′ and positive constant α is replaced by positive

definite real symmetric matrix

A =


a11 a12 . . . a1p

a21 a22 . . . a2p

...
... . . .

...

ap1 ap2 . . . app


The square α(x− β)2 = (x− β)α(x− β) is replaced by the quadratic form

(x− b)′A(x− b) =

p∑
i,j=1

aij(xi − bi)(xj − bj).

So, the density function of p variate normal distribution is

f(x1, x2, . . . , xp) = Ke−
1
2

(x−b)′A(x−b)

where K is chosen such that
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

f(x1, x2, . . . , xp)dx1dx2 . . . dxp = 1
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As (x− b)′A(x− b) is positive definite, we have f(x1, x2, . . . , xp) ≤ K that is

f is bounded for all x ∈ Rp.

If A is positive definite there exists a non singular matrix C such that

C ′AC = I.

Let us consider the transformation (x1, x2, . . . , xp)
′ → (y1, y2, . . . , yp)

′ such

that

x− b = Cy.

(x− b)′A(x− b) = y′C ′ACy = y′y.

The jacobian of the transformation is J = mod |C| = absolute value of the

determinant C.

Thus

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

Ke−
1
2

(x−b)′A(x−b)dx1dx2 . . . dxp = 1

⇒
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

Ke−
1
2
y′y mod |C|dy1dy2 . . . dyp = 1

⇒
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

Ke
− 1

2

p∑
i=1

y2i
mod |C|dy1dy2 . . . dyp = 1

⇒
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

K mod |C|
p∏
i=1

e−
1
2
y2i dy1dy2 . . . dyp = 1

⇒ K mod |C|
∞∫
−∞

e−
1
2
y21dy1

∞∫
−∞

e−
1
2
y22dy2 . . .

∞∫
−∞

e−
1
2
y2pdyp = 1

⇒ K. mod |C|
(√

2π
)p

= 1
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Now, |C ′| · |A| · |C| = 1, hence |C| = 1/
√
|A|, so

K =

√
|A|

(2π)p/2

So, the probability density function of multivariate normal distribution is√
|A|

(2π)p/2
e−

1
2

(x−b)′A(x−b)

Now we want to write b and |A| in terms of moments. We define

µ = E(X) = (E(X1), E(X2), . . . , E(Xp))
′ = (µ1, µ2, . . . , µp)

′

is the mean vector of X and

D(X) = Σ = E(X − µ)(X − µ)′ = E(XX ′)− µµ′

is variance - covariance matrix.

The transformation gives X = CY + b. Now Y1, Y2, . . . , Yp are i.i.d. normal

random variable with E(Yi) = 0 and V (Yi) = 1 for all i = 1, 2, . . . , p. That

gives E(Y ) = (0, 0, . . . , 0)′ and hence µ = E(X) = b. Again the variance

covraiance matrix

E(Y Y ′) = Ip.

Thus

E(X − µ)(X − µ)′ = CIC ′ = CC ′.

Now, as C ′AC = I we get A = (C ′)−1C−1 by multiplication of (C ′)−1 on the

left and C−1 on the right. So,

CC ′ = A−1

So, the variance-covariance matrix of X is

Σ = E(X − µ)(X − µ)′ = A−1.
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Here Σ is positive definite.

We can summarize as follows, given a vector µ = (µ1, µ2, . . . , µp)
′ and posi-

tive definite matrix Σ there exists random vector X = (X1, X2, . . . , Xp)
′ that

follows multivariate normal distribution with density function

f(x1, x2, . . . , xp) =
1

(2π)
p
2 |Σ|

1
2

e−
1
2

(x−µ)′Σ−1(x−µ)

with x = (x1, x2, . . . , xp)
′ ∈ Rp.

Exercises:

1. Derive the p.d.f. of bivariate normal random vector X = (X1, X2)′ with

mean vector (µ1, µ2)′ and variance-covariance matrix

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)

2. Let us consider the following densities

(a) 1
2π exp[−1

2(x2 + y2 + 4x− 6y + 13)]

(b) 1
2π exp[−1

2(2x2 + y2 + 2xy − 22x− 14y + 65)]

obtain b and A. Also find C such that CAC ′ = I

Theorem 1: Let X be p component random vector with X ∼ Np(µ,Σ).

Then

Y = CX

is distributed according to Np(Cµ,CΣC ′) for C non singular.

Proof: The transformation Y = CX gives

x = C−1y
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So, the jacobian of the transformation is

mod |C−1| = 1

mod |C|
=

√
1

|C||C ′|
=

√
|Σ|

|C| · |Σ| · |C ′|
=

√
|Σ|
|CΣC ′|

The quadrattic component of Np(µ,Σ) is

Q = (x− µ)′Σ−1(x− µ)

The transformation x = C−1y gives

Q = (C−1y − µ)′Σ−1(C−1y − µ)

= (C−1y − CC−1µ)′Σ−1(C−1y − CC−1µ)

=
[
(C−1)(y − Cµ)

]′
Σ−1

[
C−1(y − Cµ)

]
= (y − Cµ)′(C−1)′Σ−1C−1(y − Cµ)

= (y − Cµ)′(CΣC ′)−1(y − Cµ)

since (C ′)−1 = (C−1)′.

Thus the density of Y is

1

(2π)
p
2 |Σ|

1
2

e−
1
2

(C−1y−µ)′Σ−1(C−1y−µ) mod |C−1| = 1

(2π)
p
2 |CΣC ′|

1
2

e−
1
2

(y−Cµ)′(CΣC′)−1(y−Cµ)

Exercise: 1. Let Y = CX + b where C is p × p non singular matrix and b

is p × 1 vector. Obtain the distribution of Y if X ∼ Np(µ,Σ). Show that

Y ∼ Np(Cµ+ b, CΣC ′).

2. Show that if Σ is positive definite then Σ−1 is also positive definite.

5



Marginal and Conditional Distribution

Let Xp×1 be random vector which follows a p dimensional multivariate normal

Np(µ,Σ). Let X be partitioned as

X =

(
X(1)

X(2)

)
where X(1) =


X1

X2

...

Xq

 and X(2) =


Xq+1

Xq+2

...

Xp


We assume X is p-variate normal with mean vector

µ =

(
µ(1)

µ(2)

)

and variance covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where Σ21 = Σ′12. Here

E(X(1)) = µ(1) and E(X(2)) = µ(2)

and

E
(
X(1) − µ(1)

)(
X(1) − µ(1)

)′
= Σ11

E
(
X(1) − µ(1)

)(
X(2) − µ(2)

)′
= Σ12

E
(
X(2) − µ(2)

)(
X(2) − µ(2)

)′
= Σ22

Theorem 2 X(1) and X(2) are independently if Σ12 = Σ′21 = 0.

Under the given condition

Σ =

(
Σ11 0

0 Σ22

)
.

Its inverse is

Σ−1 =

(
Σ−1

11 0

0 Σ−1
22

)
.
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The quadratic form is

Q = (x− µ)′Σ−1(x− µ)

=
[
(x(1) − µ(1))′, (x(2) − µ(2))′

](Σ−1
11 0

0 Σ−1
22

)(
x(1) − µ(1)

x(2) − µ(2)

)

=
(
x(1) − µ(1)

)′
Σ−1

11

(
x(1) − µ(1)

)
+
(
x(2) − µ(2)

)′
Σ−1

22

(
x(2) − µ(2)

)
= Q1 +Q2

whereQ1 =
(
x(1) − µ(1)

)′
Σ−1

11

(
x(1) − µ(1)

)
andQ2 =

(
x(2) − µ(2)

)′
Σ−1

22

(
x(2) − µ(2)

)
.

Also we note that |Σ| = |Σ11| · |Σ22|.

The pdf of X is

f(x|µ,Σ) =
1

(2π)
p
2 |Σ|

1
2

e−
1
2
Q

=
1

(2π)
q
2 |Σ11|

1
2

e−
1
2
Q1 · 1

(2π)
p−q
2 |Σ22|

1
2

e−
1
2
Q2

= f1(x(1)|µ(1),Σ11) · f2(x(2)|µ(2),Σ22)

So, marginal distribution of X(1) is Nq(µ
(1),Σ11) and marginal distribution of

X(2) is Np−q(µ
(2),Σ22).

Let us consider the linear transformation

Y =

(
Y (1)

Y (2)

)
=

(
Iq −B
0 Ip−q

)(
X(1)

X(2)

)
= CX

If X ∼ Np(µ,Σ), then by Theorem 1, Y ∼ Np(Cµ,CΣC ′) where

Cµ =

(
µ(1) −Bµ(2)

µ(2)

)

and

CΣC ′ =

(
Σ11 +BΣ22B

′ −BΣ21 − Σ12B
′ Σ12 −BΣ22

Σ12 −BΣ22 Σ22

)
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As Σ is non -singular both Σ−1
11 and Σ−1

22 exists. If B is chosen such that

Σ12 −BΣ22 = 0 that is if

B = Σ12Σ−1
22

then Y (1) and Y (2) are uncorrelated and thus independent.

We have(
Y (1)

Y (2)

)
=

(
X(1) − Σ12Σ−1

22 X
(2)

X(2)

)
∼ Np

((
ν1.2

µ(2)

)
,

(
Σ11.2 0

0 Σ22

))

where

ν1.2 = µ(1) − Σ12Σ−1
22 µ

(2)

and

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21

Since, X(1) − Σ12Σ−1
22 X

(2) and X(2) are independent, the marginal densities

are

g
(
x(1)|x(2)

)
=

1

(2π)
q
2 |Σ11.2|

1
2

e−
1
2

(x(1)−ν1.2)′Σ−1
11.2(x(1)−ν1.2)

and

f2(x(2)) =
1

(2π)
p−q
2 |Σ22|

1
2

e−
1
2(x(2)−µ(2))

′
Σ−1

22 (x(2)−µ(2))

So, using linear transformation we can rewrite the joint density of X =

(X(1), X(2))′ as

f(x|µ,Σ) = g
(
x(1)|x(2)

)
f2(x(2))

But

f(x(1), x(2)|µ,Σ) = f1|2

(
x(1)|x(2)

)
f2(x(2))

where f1|2
(
x(1)|x(2)

)
is the conditional density function of X(1) given X(2).

So, conditional density of X(1) given X(2) = X(2) must be g
(
x(1)|x(2)

)
. Since

the quadratic form of g
(
x(1)|x(2)

)
can be written as

Q(x(1) − Σ12Σ−1
22 x

(2); ν1.2,Σ11.2) =
(
x(1) − µ1.2

)′
Σ11.2

(
x(1) − µ1.2

)
where

µ1.2 = µ(1) + Σ12Σ−1
22 (x(2) − µ(2))
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and

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21.

So,

X(1)|X(2) ∼ Nq

(
µ(1) + Σ12Σ−1

22 (x(2) − µ(2)),Σ11 − Σ12Σ−1
22 Σ21

)
Exercise Obtain the conditional density of X(2) given X(1)

Moment Generating function

The moment generating function of Xp×1 distributed according as Np(µ,Σ)

is

MX(t) = exp

{
t′µ+

1

2
t′Σt

}
We have

MX(t) =
1

(2π)
p
2 |Σ|

1
2

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e−
1
2

(x−µ)′Σ−1(x−µ)+t′xdx1dx2 . . . dxp

Let y = x− µ, we obtain

MX(t) =
1

(2π)
p
2 |Σ|

1
2

et
′µ

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e−
1
2
y′Σ−1y+t′ydy

Since Σ is positive definite, so Σ−1 is also positive definite. Hence Σ−1 = H ′H

for some non singular matrix H. Then |H|2 = 1
|Σ| . Let us consider the

tranformation z = Hy. The jacobian of the transformation 1
|H| = |Σ|

1
2 . So,

dy = |Σ|
1
2dz. So,

MX(t) =
1

(2π)
p
2 |Σ|

1
2

et
′µ

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e−
1
2
y′H′Hy+t′ydy

=
1

(2π)
p
2 |Σ|

1
2

et
′µ

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e−
1
2
z′z+t′H−1z|Σ|

1
2dz

=
1

(2π)
p
2

et
′µ

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e
− 1

2

p∑
i=1

(z2i−2bizi)
dz
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where b′ = (b1, b2, . . . , bp) = t′H−1. So,

MX(t) =
1

(2π)
p
2

et
′µ+ 1

2
b′b

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

e
− 1

2

p∑
i=1

(zi−bi)2
dz

= exp

{
t′µ+

1

2
b′b

}
= exp

{
t′µ+

1

2
t′H−1(H ′)−1t

}
= exp

{
t′µ+

1

2
t′(H ′H)−1t

}
= exp

{
t′µ+

1

2
t′Σt

}

Theorem If X ∼ Np(µ,Σ) then the linear combination l′X follows univariate

normal given by l′X ∼ N(l′µ, l′Σl) where l′ = (l1, l2, . . . , lp).

Proof: Left as an exercise. Use moment generating function.

Theorem: If X ∼ Np(µ,Σ) and Y = CX + b where C is any given

q × p real matrix with Rank(C) = q ≤ p and b is any q × 1 vector , then

Y ∼ Nq(Cµ+ b,CΣC′).

Proof: Let us consider the transformation

Y∗ =

(
Y1

Y2

)
=

(
C

B

)
X +

(
b

0p−q

)

where B is any (p− q)× p matrix. Then(
Y1

Y2

)
∼ Np

((
Cµ+ b

B

)
,

(
CΣC′ CΣB′

BΣC′ BΣB′

))

Then Y = Y1 = CX + b ∼ Nq (Cµ+ b,CΣC′).

Theorem: If X ∼ Np(µ,Σ), then

(X− µ)′Σ−1(X− µ) ∼ χ2
p
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Proof: As Σ−1 is positive definite we have Σ−1 = H ′H for some non singular

matrix H. Let Z = H(X − µ). Then jacobian of the transformation is

|J| = 1
|H| = |Σ|

1
2 . The joint pdf of Z = (Z1,Z2, . . . ,Zp)

′ is

f(z) =
1

(2π)
p
2

exp

{
−1

2
z′z

}
=

1

(2π)
p
2

exp

{
−1

2

p∑
i=1

z2
i

}

So, Zi ∼ N(0, 1) for all i = 1, 2, . . . , p. Hence

(X− µ)′Σ−1(X− µ) = Z′Z ∼ χ2
p

Regression and Correlation

Let Xp×1 be random vector which follows a p dimensional multivariate normal

Np(µ,Σ). Let X be partitioned as

X =

(
X(1)

X(2)

)
where X(1) =


X1

X2

...

Xq

 and X(2) =


Xq+1

Xq+2

...

Xp


We assume X is p-variate normal with mean vector

µ =

(
µ(1)

µ(2)

)

and variance covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where Σ21 = Σ′12.

Then conditional distribution of X(1) given X(2) is given by ,

X(1)|X(2) ∼ Nq (µ1.2,Σ11.2)

where µ1.2 = µ(1) + Σ12Σ−1
22 (x(2) − µ(2)) and Σ11.2 = Σ11 −Σ12Σ

−1
22 Σ21.

Then E
(
X(1)|X(2)

)
= µ(1) + Σ12Σ−1

22 (x(2) − µ(2)) .
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Definition: The matrix B = Σ12Σ
−1
22 is the matrix of regression coeffcients

of X(1) on x(2).

The element in the ith row and (k − q)th column of B = Σ12Σ
−1
22 is denoted

by

βik.q+1...k−1,k+1,...p, i = 1, 2, . . . , q, k = q + 1, . . . , p

The vector µ(1) + B
(
x(2) − µ(2)

)
is called regression function.

Let σij.q+1...p is the i, jth element of Σ11.2.

Definition:

ρij.q+1...p =
σij.q+1...p√

σii.q+1...p
√
σjj.q+1...p

i, j = 1, 2, . . . , q

is the partial correlation between Xi and Xj holding Xq+1, . . . , Xp fixed.

Let σ′(i) is the ith row of Σ12 and β′(i) is the ith row of B that is β′(i) = σ′(i)Σ
−1
22 .

Definition

The correlation between Xi and β′(i)X
(2) is called multiple correlation between

Xi and X(2).

It can be shown that multiple correlation between Xi and X(2) is

R̄i.q+1...p =

(
σ′(i)Σ

−1
22 σ(i)

σii

) 1
2
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Tests of Hypotheses for partial correlation coefficients

Let rij.q+1...p is the sample partial correlation coefficient based on a sample of

size N from a p dimensional multivariate normal distribution with population

partial correlation coefficient ρij.q+1...p.

To test H0 : ρij.q+1...p = ρ0 against two test alternatives we can use Fisher’s z

for an approximate test based on large sample size N . Let

z =
1

2
ln

1 + rij.q+1...p

1− rij.q+1...p

and

ζ0 =
1

2
ln

1 + ρ0

1− ρ0
.

Then H0 is rejected if

|
√
N − (p− q)− 3(z − ζ0)| > τα/2

where τα is 100α% percentile point of standard normal distribution.

Test of Hypotheses for multiple correlation coeffcient

LetR be the sample correlation coefficient between X1 and X(2) = (X2, X3, . . . , Xp)

based on a sample of size N from N(µ,Σ). If the population multiple corre-

lation coefficient R̄ = 0 then
[

R2

1−R2

] [
N−p
p−1

]
is distributed as F with p− 1 and

N − p degrees of freedom.

To test H0 : R̄ = 0, we use the critical region

R2

1−R2

N − p
p− 1

> Fα,p−1,N−p

where Fα,p−1,N−p is the upper α significance point corresponding to α signif-

icance level.

13


