Collective Risk Models for Short-Term Periods

Tuhinshubhra Bhattacharya

In collective risk model we assume a random process that generates claims for a portfolio of policies. This process is characterized in terms of portfolio as a whole rather than individual policies comprising the portfolio. In individual risk model, we had assumed that the number of times the claim will be made within the insured period is 0 or 1 and number of policies is fixed as n. But at the beginning of a period of insurance cover, the company does not know that how many claims will occur and what the amounts of the claims will be. The collective risk models takes into account these two sources of variability.

Suppose N be the random variable that denotes the number of claims produced by a portfolio of policies in a given period. Then the possible values of N are $0, 1, 2, \ldots$ If X_i denotes the amount of the i^{th} claim in the given period, then the aggregate of claims S generated by the portfolio for a given period is modelled as

$$S = \sum_{i=1}^{N} X_i \quad \text{with} \quad S = 0 \quad \text{when} \quad N = 0.$$

<u>Assumptions:</u> (i) $X_1, X_2, ...$ are independent and identically distributed random variables .

(ii) N is independent of $(X_i)_{i=1}^{\infty}$.

Let P(x) denote the common d.f. of the independent and identically distributed $X_i's$. Let X be a random variable with this d.f. Let

$$p_k = E(X^k)$$

, then expectation of S is

$$E(S) = E(E(S|N)) = E(N \cdot p_1) = p_1 E(N)$$

and variance is S, and

$$V(S) = V(E(S|N)) + E(V(S|N)) = V(p_1N) + E(N(p_2 - p_1^2)) = p_1^2 V(N) + (p_2 - p_1^2) E(N)$$

So, expected aggregate claim is product of expected number of claims and expected individual claim amount and variance of S has two parts, first due to variance of number of claims and second due variance of individual claim amount.

Let $M_X(t) = E(e^{tX})$ is MGF of X and $M_N(t) = E(e^{tN})$ is MGF of N, then moment generating function of S is

$$M_{S}(t) = E(e^{tS})$$

$$= E\left[E\left(e^{t\sum_{i=1}^{N}X_{i}}|N\right)\right]$$

$$= E[(M_{X}(t))^{N}|N]$$

$$= E[\exp(N\ln M_{X}(t)|N)]$$

$$= M_{N}[\ln M_{X}(t)]$$

Example 1:Let N is a geometric random variable with p.m.f. as

$$p(x) = pq^n$$
 $n = 0, 1, 2, ...$

where 0 < q < 1. Obtain the moment generating function of $S = \sum_{i=1}^{N} X_i$ in terms of MGF of X, $M_X(t)$ when N is assumed to be independent of i.i.d. random variables X_1, X_2, \ldots

Now, the MGF of N is

$$M_N(t) = \sum_{n=0}^{\infty} e^{tn} p q^n = \frac{p}{1 - q e^t}.$$

As, $S = \sum_{i=1}^{N} X_i$ where N is assumed to be independent of i.i.d. random variables X_1, X_2, \ldots , the MGF of S can be written as

$$M_S(t) = M_N[\ln M_X(t)] = \frac{p}{1 - qe^{\ln M_X(t)}} = \frac{p}{1 - qM_X(t)}$$

The distribution of S

Let $G(x) = P(S \le x)$ be distribution function of X and $F(x) = P(X_i \le x)$ is the common distribution function of $X_i, i = 1, 2, \ldots$ Let $p_n = P(N = n)$ is the probability mass function of N where $n = 0, 1, 2, \ldots$ Now,

$$\{S \le x\} = \bigcup_{n=1}^{\infty} \{S \le x, N = n\}$$

So, for $x \geq 0$,

$$P(S \le x) = \sum_{n=0}^{\infty} P(S \le x, N = n)$$

$$= \sum_{n=0}^{\infty} P\left(\sum_{i=1}^{n} X_i \le x | N = n\right) P(N = n)$$

$$= \sum_{n=0}^{\infty} P\left(\sum_{i=1}^{n} X_i \le x\right) P(N = n)$$

$$= F^{n*}(x)p_n$$

where F^{n*} is the distribution function of $X_1 + X_2 + \ldots + X_n$ and $F^{0*}(x) = 1$ if $x \ge 0$ and x < 0.

Example 2: As in Example 1, let the number of claims N is a geometric random variable with

$$p(x) = pq^n$$
 $n = 0, 1, 2, ...$

and common distribution unction of X is

$$F(x) = 1 - e^{-x}, \quad x > 0$$

that is individual claim amount is exponential random variable with mean 1. Then show that

$$M_S(t) = p + q \frac{p}{p - t}.$$

Solution: The MGF of X is

$$M_X(t) = \int_{0}^{\infty} e^{tx} e^{-x} dx = (1-t)^{-1}.$$

Then from the result in Example 1,

$$M_S(t) = M_N[\ln M_X(t)] = \frac{p}{1 - qM_X(t)}$$

$$= \frac{p}{1 - q(1 - t)^{-1}}$$

$$= \frac{p(1 - t)}{p - t}$$

$$= p + (1 - p)\frac{p}{p - t}$$

As 1 is the MGF of the random variable which is degenerated at 0 and p/(p-t) is the MGF of exponential random variable with cdf $H(x) = 1 - e^{-px}$. Hence we S has a mixed distribution with weight p at 0 and weight q for x > 0. The cdf of S is

$$F_S(x) = p \cdot 1 + q \cdot (1 - e^{-px}) = 1 - qe^{-px}, \quad x \ge 0$$

Example 3 An insurance portfolio produces N claims where N is random variable defined as

$$N = \begin{cases} 0 & \text{with probability} & 0.5\\ 1 & \text{with probability} & 0.4\\ 3 & \text{with probability} & 0.1 \end{cases}$$

The individual claim X (in lakes) follows the probability distribution give as

$$X = \begin{cases} 1 & \text{with probability} \quad 0.9 \\ 10 & \text{with probability} \quad 0.1 \end{cases}.$$

It is assumed that the individual claim amount and N are independent random variables. Calculate the exact probability that aggregate claims exceed 3 times the expected claims.

Solution E(N) = 0.7 and E(X) = 1.9. Hence E(S) = E(N)E(X) = 1.33. Hence, required probability is

$$P(S > 3(1.33)) = P(S > 3.99) = 1 - P(S < 3.99)$$

$$= 1 - P(S = 0|N = 0)P(N = 0)$$

$$- P(X_1 = 1|N = 1)P(N = 1)$$

$$- P(X_1 = 1, X_2 = 1, X_3 = 1|N = 3)P(N = 3)$$

$$= 1 - 1(0.5) - 0.9(0.4) - (0.9)^3 \cdot (0.1)$$

$$= 0.0671$$

Distribution of N

1. Let the distribution of N is Poisson with parameter λ . Then $E(N) = Var(N) = \lambda$. With this choice of distribution of N, the distribution of S is called **compound Poisson distribution**. As before, we assume $p_k = E(X_i^k)$, then expectation is

$$E(S) = \lambda p_1$$

and variance is

$$V(S) = V(E(S|N)) + E(V(S|N)) = p_1^2 \lambda + (p_2 - p_1^2)\lambda = \lambda p_2.$$

The moment generating function of N is

$$M_N(t) = \exp\{\lambda(e^t - 1)\}.$$

Hence, moment generating function of S is

$$M_S(t) = M_N[\ln M_X(t)] = \exp{\{\lambda(M_X(t) - 1)\}}$$

2. When the variance number of claims exceeds its mean, then Poisson distribution is not appropriate. Suppose the distribution of N is negative binomial with p.m.f.

$$P(N = n) = \binom{r+n-1}{n} p^r q^n$$
 $n = 0, 1, 2, \dots$

This distribution has two parameters r and 0 . For this distribution, we have

$$M_N(t) = \left(\frac{p}{1 - qe^t}\right)^r$$

and $E(X) = \frac{rq}{p}$ and $V(X) = \frac{rq}{p^2}$. When negative binomial is chosen as the distribution of N, then distribution of S is called *compound negative binomial* distribution. As, $S = \sum_{i=1}^{N} X_i$ and $E(X_i^k) = p_k$ we have

$$E(S) = \frac{rq}{p}p_1$$

and variance is

$$V(S) = V(E(S|N)) + E(V(S|N)) = p_1^2 \frac{rq}{p} + (p_2 - p_1^2) \frac{rq}{p^2} = p_2 \frac{rq}{p} + p_1^2 \frac{rq^2}{p^2}.$$

Also, the MGF of S is

$$M_S(t) = M_N[\ln M_X(t)] = \left(\frac{p}{1 - qM_X(t)}\right)^r$$

Exercises:

- 1. Suppose that S has a compound Poisson distribution with $\lambda = 3$ and the common distribution of X_1, X_2, \ldots is characterized by the p.m.f. p(x) = 0.1x where x = 1, 2, 3, 4. Calculate probabilities that aggregate claims equal to 0, 1, 2, 3. Also, find the probability that aggregate claims exceed 3 units.
- 2. In a collective risk model, suppose the frequency N of claims is a random variable with possible values 0,1,2 with probabilities 0.4,0.2,0.4 respectively. Amunt X of claims is a random variable with possible values 1000,3000,7000 with probabilities 0.3,0.4,0.3 respectively. Find the distribution of total risk to the company for a short period.
- 3. For a collective risk model, the number of claims has a negative binomial distribution with parameters r=2 and p=1/3. Claim amounts are mutually independent with two possible values 1 and 2 with equal

chance. Find moment generating function of total claims.

4. Aggregate claim S in a collective risk model has a compound negative binomial distribution, with parameters k=100 and p=0.3 for the negative binomial distribution and individual claim distribution is exponential with mean 100 units. Find mean and variance of S. Using normal approximation, find P[S>1.3E(S)].

Send the solutions of the exercises at tuhinsubhra.bh@gmail.com. Do the exercises on your workbook clearly and scan those to send to my mail