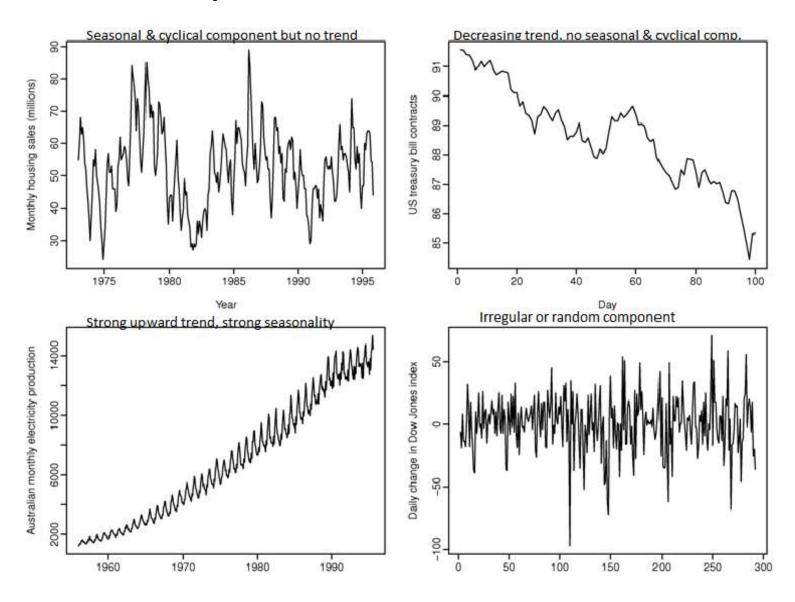
Time Series Analysis

Ву

Tanmay Kr. Maity
Assistant Professor, Dept. of Statistics,
Haldia Govt. College, Vidyasagar University

Time Series


- Time series
 A series of observations recorded over time
- Examples:
 - Daily closing price of a stock over several period
 - Turn-over of a firm over a no. of months
 - Sales of a business establishment over no. of weeks
 - Exchange rate observed over certain interval of time
 - Quarterly profit of a company over several quarters

Component of Time series

- Systematic component
 - Trend: Smooth, regular, long-term movement of time series
 - Seasonal variation: Periodic movement where the period is not longer than one year
 - Cyclical variation: Oscillatory movement where the period of oscillation being more than a year
- Random or Irregular component

Purely random, erratic, unforeseen fluctuations due to numerous non-recurring and irregular circumstances such as floods, strikes, earthquakes etc.

Component of Time series

Classical models of time series

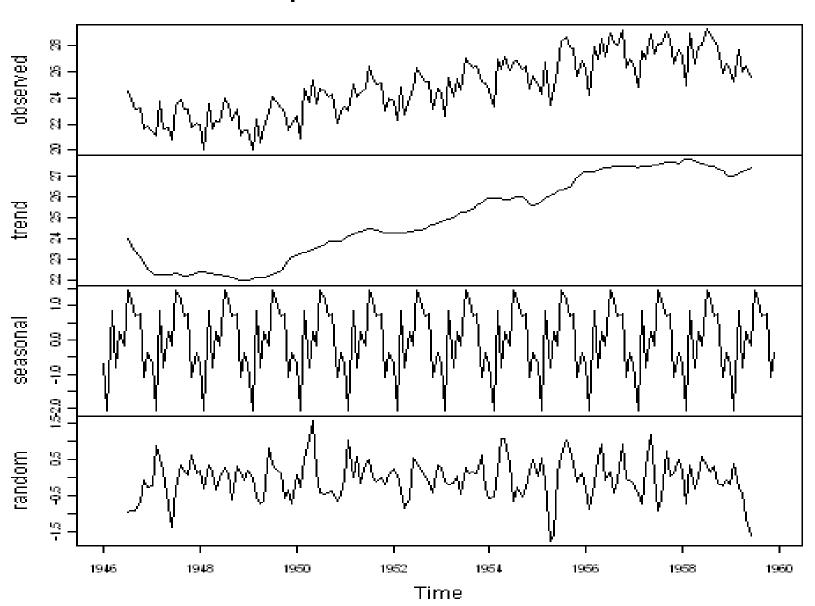
Additive model:

$$y_t = T_t + S_t + C_t + \varepsilon_t$$

Multiplicative model

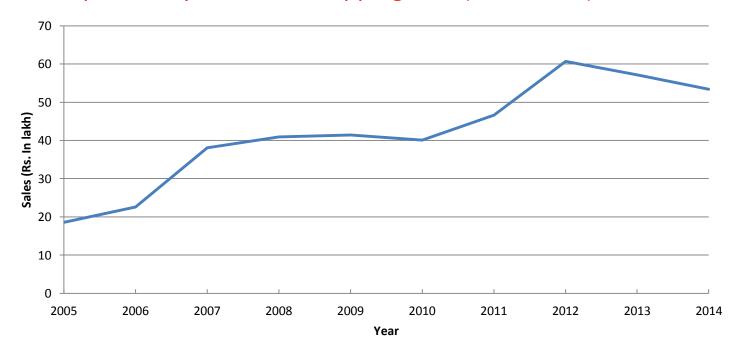
$$y_t = T_t S_t C_t \varepsilon_t$$

Mixed models:


$$y_{t} = T_{t}C_{t} + S_{t}\varepsilon_{t}$$

$$y_{t} = T_{t} + S_{t}C_{t}\varepsilon_{t}$$

$$y_{t} = T_{t} + S_{t} + C_{t}\varepsilon_{t}$$


- $y_t \rightarrow \text{Time series at time t}$
- $T_t \rightarrow \text{Trend at time t}$
- $S_t \rightarrow \text{Seasonality at time t}$
- $C_t \rightarrow \text{Cyclicity at time t}$
- $\varepsilon_{\scriptscriptstyle t} \to \,\,$ Random component at time t

Decomposition of additive time series

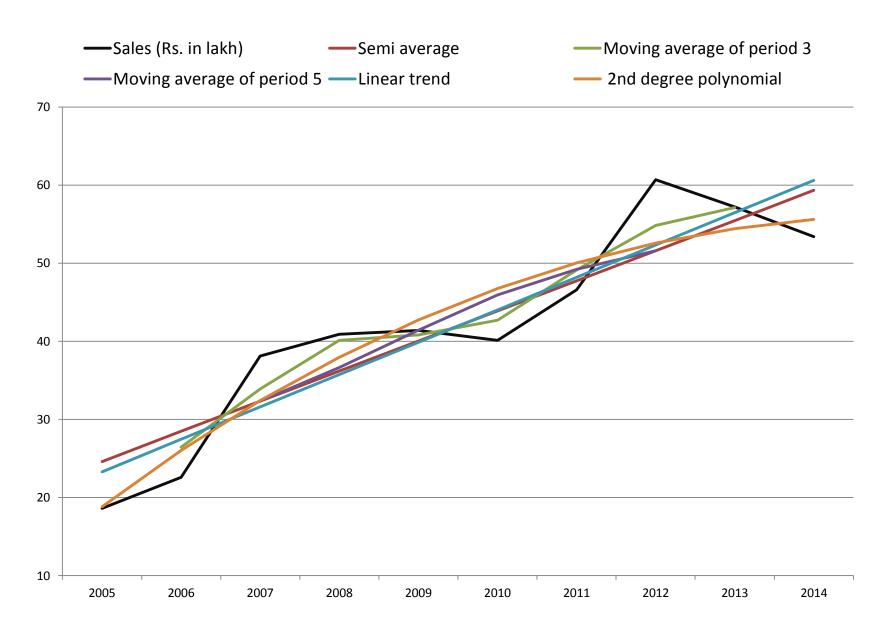
Determination of various components... Trend:

- Semi-average method
- Moving average method
- Fitting mathematical curves
- Example: Yearly sales in a shopping mall (2005-2014)

Trend determination: Semi average method

Increase in trend in 5 years = 51.6-32.32=19.28Increase in trend in 1 year = 19.28/5 = 3.856

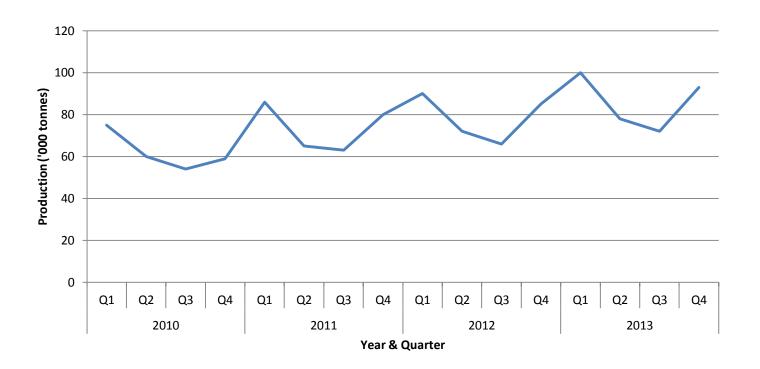
Years	Sales (Rs. in lakh)	Semi- Totals	Semi- Average	Trend Values
2005	18.6			28.464 - 3.856 = 24.608
2006	22.6			32.32 – 3.856 = 28.464
2007	38.1	161.6	32.32	32.32
2008	40.9			32.32 + 3.856 = 36.176
2009	41.4			36.176 + 3.856 = 40.032
2010	40.1			40.032 + 3.856 = 43.888
2011	46.6			43.888 + 3.856 = 47.744
2012	60.7	258	51.6	51.6
2013	57.2			51.6 + 3.856 = 55.456
2014	53.4			55.456 + 3.856 = 59.312


Trend determination: Moving average method

Years	Sales (Rs. in lakh)	Moving average of period 3 (Trend value)	Moving average of period 5 (Trend value)
2005	18.6		
2006	22.6	26.43	
2007	38.1	33.87	32.32
2008	40.9	40.13	36.62
2009	41.4	40.8	41.42
2010	40.1	42.7	45.94
2011	46.6	49.13	49.2
2012	60.7	54.83	51.6
2013	57.2	57.1	
2014	53.4		

Trend determination: Method of mathematical curves

- Fitting mathematical curves to the data such as:
 - ✓ Linear curve
 - ✓ Polynomial of order p
 - ✓ Exponential
 - ✓ Power curve


Trend determination

Determination of various components... Seasonal fluctuations:

- Ratio to moving average method
- Ratio to trend method(fitting mathematical curves)

Example: Quarterly production from a factory (2010-2013)

Ratio to moving average method

 Calculate trend by 4 period moving average (for quarterly data) -> MA(t)

Trend elimination: R(t) = (y(t)/MA(t)) X 100
 -> Seasonal + Random component

Seasonal index -> Average the R(t) values across the years
 => Elimination of random component

Ratio to moving average method

Computation of seasonal indices:

Original data:

	Quarterly production(in '000 tonnes)				
	Quarter 1	Quarter 2	Quarter 3	Quarter 4	
2010	75	60	54	59	
2011	86	65	63	80	
2012	90	72	66	85	
2013	100	78	72	93	

Computation of seasonal indices:

·	Trend eliminated values				
	Quarter 1	Quarter 2	Quarter 3	Quarter 4	
2010		•••	85.21	90.25	
2011	128.12	91.71	85.14	106.14	
2012	117.46	92.75	83.02	104.29	
2013	120.48	92.04	•••	•••	Total
Average (Elimination of random component) (SI)	122.02	92.17	84.45	100.23	398.87
Adjusted seasonal indices (SI x k)	122.37	92.43	84.69	100.51	400.00

Ratio to trend method(fitting mathematical curves)

- Calculate trend by fitting a mathematical curve -> T(t)
- Trend elimination: R(t) = (y(t)/T(t)) X 100
 -> Seasonal + Random component
- Seasonal index -> Average the R(t) values across the years
 => Elimination of random component

Ratio to trend method Computation of seasonal indices:

Original data:

	Quarterly production(in '000 tonnes)				
	Quarter 1	Quarter 2	Quarter 3	Quarter 4	
2010	75	60	54	59	
2011	86	65	63	80	
2012	90	72	66	85	
2013	100	78	72	93	

Computation of seasonal indices:

-	Trend eliminated values				
	Quarter 1	Quarter 2	Quarter 3	Quarter 4	
2010	119.41	93.14	81.79	87.24	
2011	124.21	91.75	86.95	108.01	
2012	118.93	93.17	83.66	105.60	
2013	121.80	93.18	84.39	106.99	Total
Average (Elimination of random component) (SI)	121.09	92.81	84.20	101.96	400.05
Adjusted seasonal indices (SI x k)	121.07	92.80	84.19	101.95	400.00

Determination of various components... Cyclical fluctuations:

Periodogram analysis

Approximate the series by considering it as the superimposition of various periodic curves such as sine and cosine curves at various amplitude and frequency

-A **periodogram** calculates the significance of different frequencies in time-series data to identify any intrinsic periodic signals.

Stochastic model

 After removing the systematic/deterministic component, the remaining series has been modeled using various stochastic model

For additive model: residual series

$$r_{t} = (T_{t} + S_{t} + C_{t} + \varepsilon_{t}) - (T_{t}' + S_{t}' + C_{t}')$$

For multiplicative model: residual series >

$$r_{t} = \frac{T_{t} S_{t} C_{t} \varepsilon_{t}}{T_{t}' S_{t}' C_{t}'}$$

- Conditional mean model
 - Linear models:
 - Autoregressive model of order p(AR(p))

$$y_{t} = \alpha_{0} + \alpha_{1}y_{t-1} + \alpha_{2}y_{t-2} + \dots + \alpha_{p}y_{t-p} + \varepsilon_{t}, \varepsilon_{t} \sim N(0, \sigma^{2})$$

Moving average model of order q(MA(q))

$$y_t = \phi_0 + \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + \dots + \phi_a \varepsilon_{t-a} + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

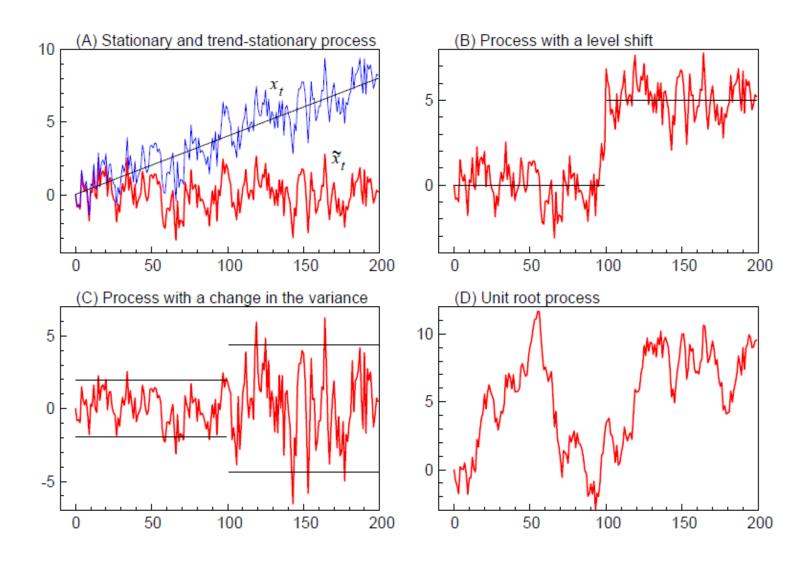
ARMA(p, q) model

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + \dots + \beta_{p}y_{t-p} + \gamma_{1}\varepsilon_{t-1} + \gamma_{2}\varepsilon_{t-2} + \dots + \gamma_{q}\varepsilon_{t-q} + \varepsilon_{t}, \varepsilon_{t} \sim N(0, \sigma^{2})$$

Stationary process

- Strong stationarity
 - Joint probability distribution does not change when shifted in time

$$F_{Y}(y_{t_{1}}, y_{t_{2}}, ..., y_{t_{k}}) = F_{Y}(y_{t_{1}+h}, y_{t_{2}+h}, ..., y_{t_{k}+h})$$


Stationary process...

- Weak stationarity:
 - $E(Y_t) = Constant$
 - $Cov(Y_t, Y_{t+h})=f(h) = Independent of t$

Examples:

- 1) White Noise is stationary
- 2) Linear trend process is not stationary
- 3) Random walk is not stationary
- 4) ARCH process is not stationary

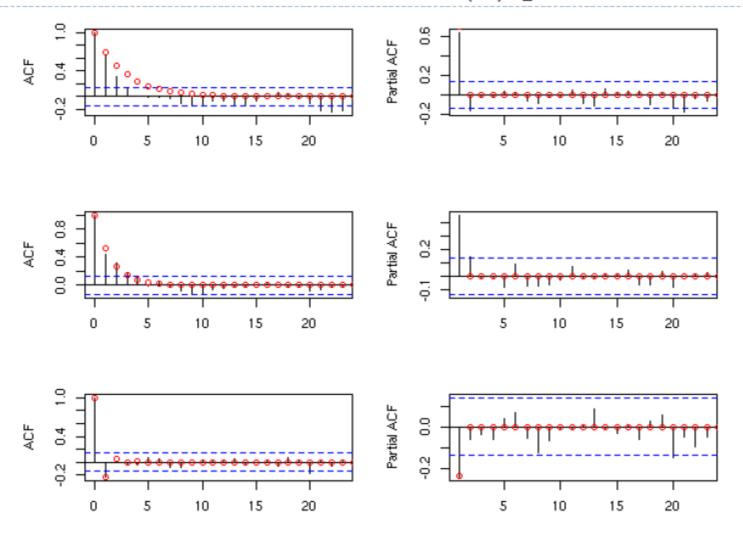
Non – stationary time series

Stochastic model

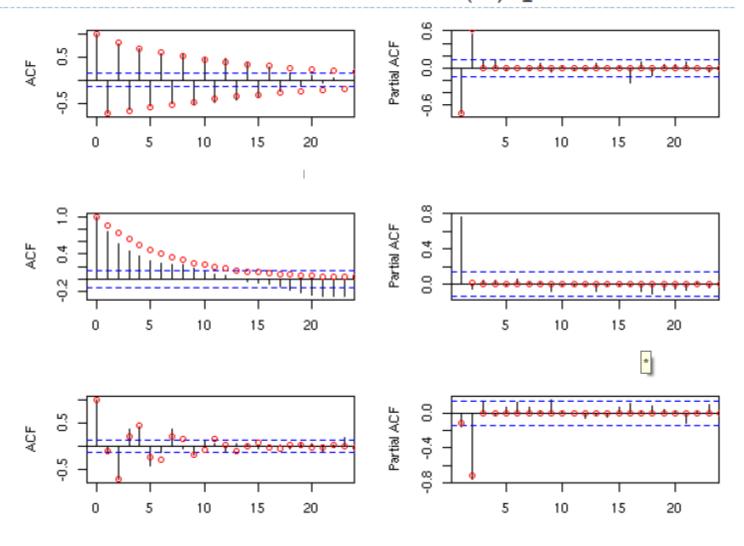
Model Identification:

Autocorrelation function(ACF) of order k:

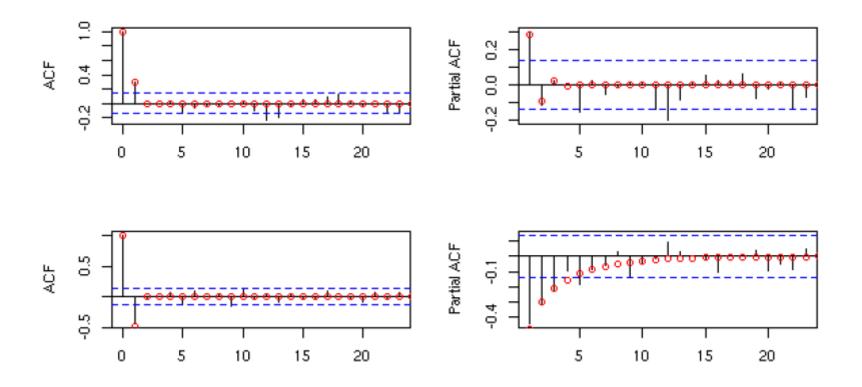
$$r(k) = Corr(y(t), y(t+k))$$

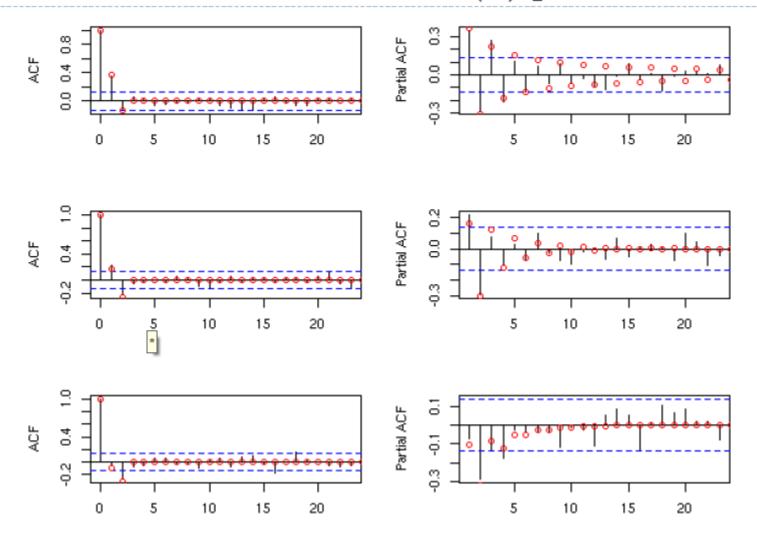

Partial autocorrelation function(PACF) of order k:

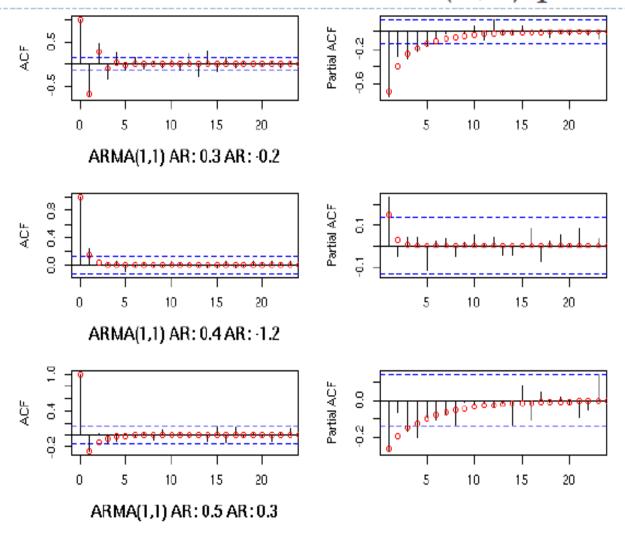
$$\alpha(k) = Corr(y(t), y(t+k) | y(t+1), ..., y(t+k-1))$$


Behavior of ACF and PACF for ARMA model:

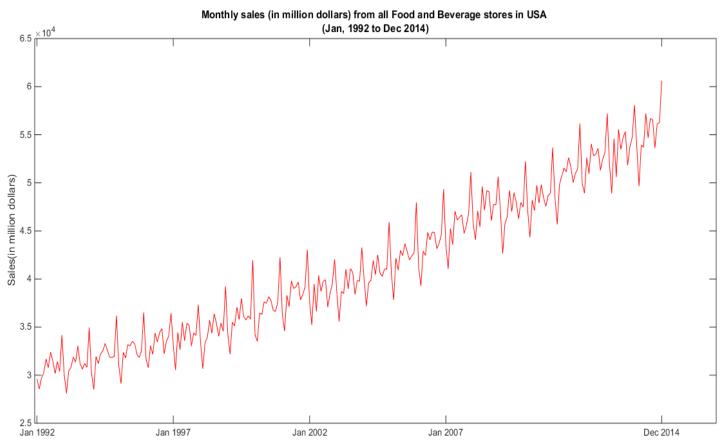
Model	ACF	PACF
White Noise	All zeros	All zeros
		p significant lags before
AR(p)	Exponential Decay	dropping to zero
	q significant lags before	
MA(q)	dropping to zero	Exponential Decay
ARMA(p,q)	Decay after qth lag	Decay after pth lag

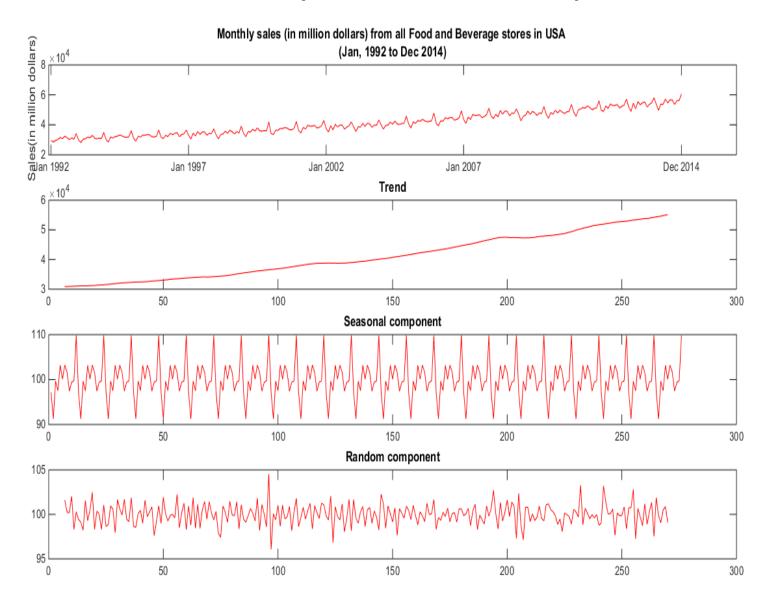

ACF and PACF for an AR(1) process


ACF and PACF for an AR(2) process

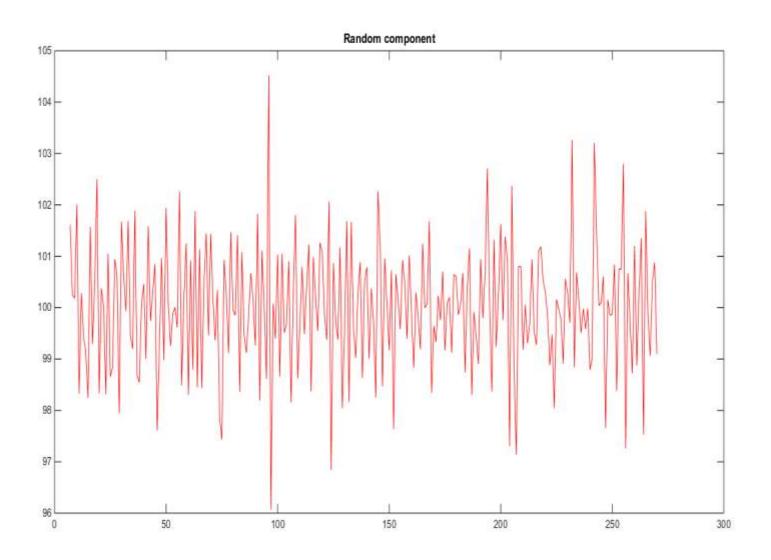

ACF and PACF for an MA(1) process

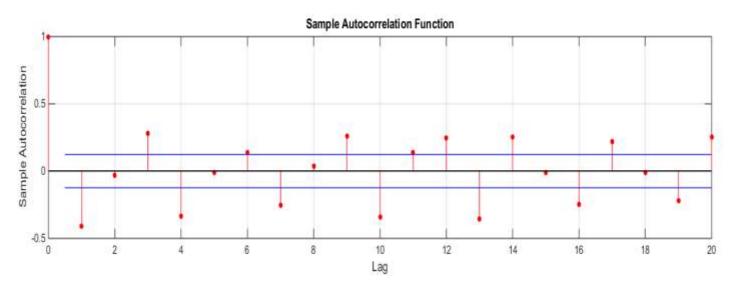
ACF and PACF for an MA(2) process

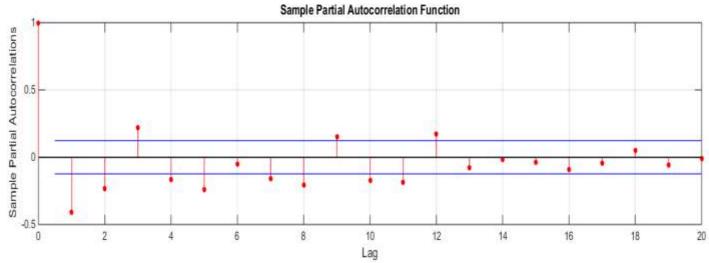

ACF and PACF for an ARMA(1,1) process


Time series modelling: An Example

Dataset used


Monthly sales (in million dollars) from all Food and Beverage stores in USA from Jan, 1992 to Dec 2014


Sales data: Decomposition in different components



Sales data: Work with the random component

Random component: ACF & PACF

