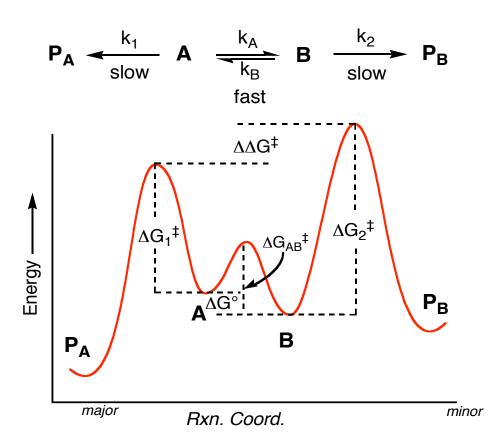
A Brief Introduction to the Curtin-Hammett Principle

- J. I. Seeman, J. Chem, Ed. 1986, 63, 42-48 The Curtin-Hammett Principle and the Winstein-Holness Equation
- J. I. Seeman, Chem. Rev. 1983, 83, 84-134. Effect of Conformational Change on Reactivity in Organic Chemistry. Evaluations, Applications, and Extensions of Curtin-Hammet-Winstein-Holness Kinetics


Curtin-Hammett Principle

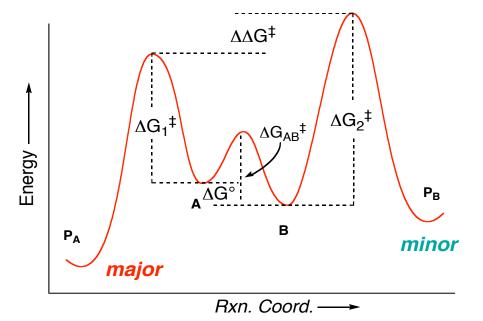
"The product composition, P_A vs P_B is not solely dependent on relative proportions of the conformational isomers in the substrate;

it is controlled by the difference in standard Gibbs energies ($\Delta\Delta G^*$) of the respective transition states."

The C-H principle may be extended to rapidly interconverting diastereomers, or constitutional isomers as well.

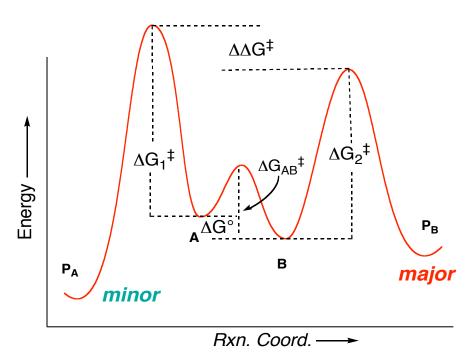
Curtin-Hammett Conditions

Chem 206, D. A. Evans


"Curtin-Hammett Conditions"

$$k_1, k_2 << k_A, k_B$$
:

$$P_A \stackrel{k_1}{=} Slow A \stackrel{k_A}{=} B \stackrel{k_2}{=} Slow P_B$$
 (1)


Case 1: Less stable conformer leads to the **major** product.

If reaction rates are much **slower** than the rate of interconversion, $(\Delta G_{AB}^{\dagger})$ is small relative to ΔG_{1}^{\dagger} and ΔG_{2}^{\dagger} , then the A/B ratio is constant throughout the course of the rxn.

Case 2: Less stable conformer leads to the **minor** product.

If reaction rates are much **slower** than the rate of interconversion, $(\Delta G_{AB}^{\dagger})$ is small relative to ΔG_1^{\dagger} and ΔG_2^{\dagger} , then the A/B ratio is constant throughout the course of the rxn.

Curtin - Hammett Principle

The product composition is not solely dependent on relative proportions of the conformational isomers in the substrate; it is controlled by the difference in standard Gibbs energies ($\Delta\Delta G^{\ddagger}$) of the respective transition states.

Case 2: Curtin-Hammett Conditons

 ${\bf k_1}, {\bf k_2} << {\bf k_A}, {\bf k_B}$: If the rates of reaction are much **slower** than the rate of interconversion, $(\Delta G_{AB}^{\ \ \ \ }$ is small relative to $\Delta G_1^{\ \ \ \ }$ and $\Delta G_2^{\ \ \ \ \ })$, then the ratio of A to B is constant throughout the course of the reaction.

The Derivation:

Using the rate equations $\frac{d[P_A]}{dt} = k_1[A]$ and $\frac{d[P_B]}{dt} = k_2[B]$ we can write:

$$\frac{d[P_B]}{d[P_A]} = \frac{k_2[B]}{k_1[A]} \quad \text{or} \quad d[P_B] = \frac{k_2[B]}{k_1[A]} d[P_A]$$
 (2)

Since A and B are in equilibrium, we can substitute $K_{eq} = \frac{[B]}{[A]}$

$$\int d[P_B] = \frac{k_2}{k_1} K_{eq} \int d[P_A] \text{ Integrating, we get } \frac{[P_B]}{[P_A]} = \frac{k_2}{k_1} K_{eq}$$
 (3)

When A and B are in rapid equilibrium, we must consider the rates of reaction of the conformers as well as the equilibrium constant when analyzing the product ratio.

To relate this quantity to ΔG values, recall that ΔG^o = -RT In K_{eq} or K_{eq} = $e^{-\Delta G^o/RT},\,k_1=e^{-\Delta G}{}_1{}^{\ddagger/RT},$ and $k_2=e^{-\Delta G}{}_2{}^{\ddagger/RT}.$ Substituting this into the above equation:

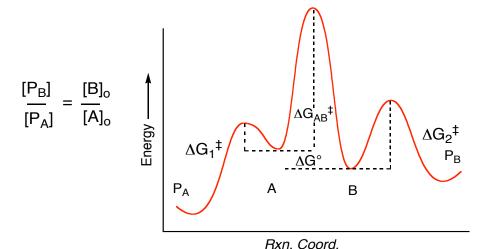
$$\frac{[P_B]}{[P_A]} = \frac{k_2}{k_1} K_{eq} = \frac{e^{-\Delta G_2^{\ddagger}/RT}}{e^{-\Delta G_1^{\dagger}/RT}} (e^{-\Delta G^{\circ}/RT}) = e^{-\Delta G_2^{\ddagger}/RT} e^{-\Delta G^{\circ}/RT} e^{\Delta G_1/RT}$$
(4)

Combining terms:

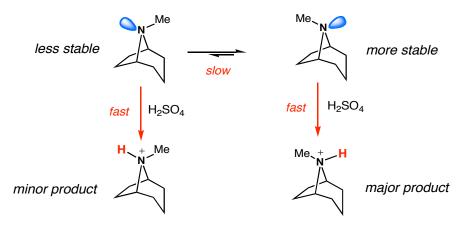
$$\frac{[P_B]}{[P_A]} = e^{-(\Delta G_2^{\ddagger} + \Delta G^{\circ} - \Delta G_1^{\ddagger})/R} \text{ or } \frac{[P_B]}{[P_A]} = e^{-\Delta \Delta G/R}$$

$$\text{Where } \Delta \Delta G^{\ddagger} = \Delta G_2^{\ddagger} + \Delta G^{\circ} - \Delta G_1^{\ddagger}$$

Curtin - Hammett Principle: The product composition is not solely dependent on relative proportions of the conformational isomers in the substrate; it is controlled by the difference in standard Gibbs energies of the respective transition states.


Within these limits, we can envision three scenarios:

- If both conformers react at the same rate, the product distribution will be the same as the ratio of conformers at equilibrium.
- If the major conformer is also the faster reacting conformer, the product from the major conformer should prevail, and will not reflect the equilibrium distribution.
- If the minor conformer is the faster reacting conformer, the product ratio will depend on all three variables in eq (2), and the observed product distribution will not reflect the equilibrium distribution.


This derivation implies that you could potentially isolate a product which is derived from a conformer that you can't even observe in the ground state!

"Non-Equilibrating Conformers"

 $\mathbf{k_1}$, $\mathbf{k_2} >> \mathbf{k_A}$, $\mathbf{k_B}$: If the rates of reaction are **faster** than the rate of interconversion, A and B cannot equilibrate during the course of the reaction, and the product distribution (P_B/P_A) will simply reflect the initial equilibrium composition.

"Non-Equilibrating Conformers"

The rates of protonation are much faster than the rates of conformation interconversion

Introduction

Two new classes of potent nonnucleoside reverse transcriptase inhibitors were recently reported by the Merck Research Laboratories: the 3,4-dihydroquinazolin-2(1*H*)-ones¹ and the 1,4-dihydro-2*H*-3,1-benzoxazin-2-ones.² Efforts to enhance the clinical utility of these inhibitor classes by deriving compounds that express both high levels of antiviral activity and augmented pharmacokinetic profiles led to one promising compound from each class—L-738,372 and DMP-266. DMP-266 was ultimately

chosen for clinical evaluation² and has shown excellent preliminary results for the treatment of HIV when used in combination with indinavir.^{3,4} The potential importance of

A Dramatic case from Merck

$$CF_3$$
 CF_3
 CF_3
 CF_3
 CF_3
 NH
 OMe
 $-78^{\circ}C$: low ee

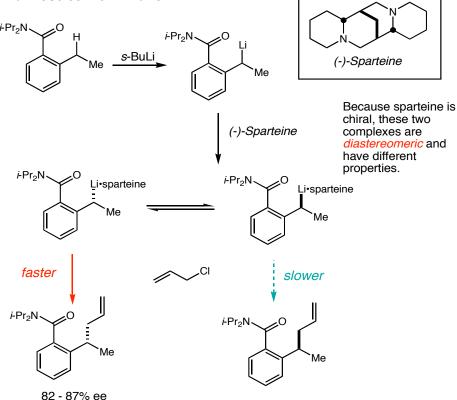
 $-78^{\circ}C$: er = 50:1

JACS 1998, 120, 2028-2038

Tropane alkylation is a well-known example.

The less stable conformer reacts much faster than the more stable conformer, resulting in an unexpected major product!

JOC 1974 319


Oxidation of piperidines:

When the equilibrium constant is known, the Curtin-Hammett derivation can be used to calculate the relative rates of reaction of the two conformers. Substituting the above data into $[P_B]/[P_A] = k_2 K/k_1$, the ratio $k_2/k_1 \sim 2$.

Note that in this case, the more stable conformer is also the faster reacting conformer!

Tet. **1972** 573 Tet. **1977** 915

Enantioselective Lithiation:

Enantioselectivities are the same, regardless of whether or not the starting material is chiral, even at low temperatures. Further, reaction in the absence of (-)-sparteine results in racemic product.

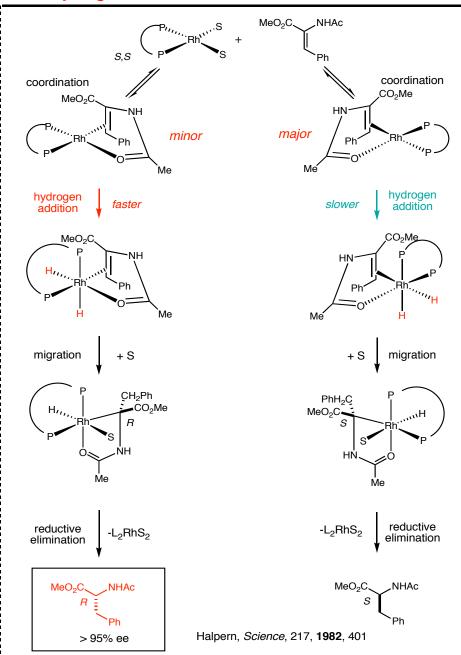
Note that the two alkyllithium complexes MUST be in equilibrium, as the enantioselectivity is the same over the course of the reaction. If they were not equilibrating, the enantioselectivity should be higher at lower conversions.

This is a case of *Dynamic Kinetic Resolution*: Two enantiomeric alkyl lithium complexes are equilibrating during the course of a reaction with an electrophile.

Beak, Acc. Chem. Res. 1996, 552

The asymmetric hydrogenation of prochiral olefins catalyzed by Rhodium is an important catalytic process.

MeO₂C NHAc
$$[L_2Rh]^+$$
 MeO₂C NHAc Ph > 95% ee


Enantioselectivities are generally very high when the ligand is a chelating diphosphine. (ee's are given for S,S-CHIRAPHOS)

When a chiral ligand is used, there are two diastereomeric complexes which may be formed:

Observations:

- Complex 2 is the only diasteromer observed for the catalyst-substrate complex (1HNMR, X-Ray crystallography) in the absence of hydrogen
- The enantioselectivity is strongly dependant on the pressure of H₂, and degrades rapidly at higher hydrogen pressures
- The observed enantiomer is exclusively derived from the minor complex 2

These observations may be explained using the Curtin - Hammett Principle

The Curtin-Hammett treatment can be extended to ANY case where different products are formed from two rapidly intereconverting starting materials, whether they are conformers, tautomers or isomers.

$$P_A \stackrel{k_1}{\longleftarrow} A \stackrel{k_A}{\longleftarrow} B \stackrel{k_2}{\longleftarrow} P_B$$
major

Stannylene ketals provide an efficient way to acylate the more hindered site of 1,2-diols.

The two stannyl esters are in equilibrium at room temperature, and the more stable isomer is initially formed more slowly. The stannyl esters are allowed to equilibrate before quenching with TMS-CI, which reacts more rapidly with the less hindered primary alkoxystannane.

JOC 1996, 5257

"It was pointed out by Professor L. P. Hammett in 1950 (private communication) that ..."

David Y. Curtin, 1954

" Because Curtin is very generous in attributing credit, this is sometimes referrred to as the Curtin-Hammett principle rather than the Curtin principle."

Louis Plack Hammett, 1970

Curtin - Hammett Principle: The product composition is not solely dependent on relative proportions of the conformational isomers in the substrate; it is controlled by the difference in standard Gibbs energies of the respective transition states.

THE TAKE-HOME LESSON:

Never assume that the most stable conformation of a compound is the most reactive. It may be, but then again, it may not.