VIDYASAGAR UNIVERSITY

PREDICTING THE HOTEL BOOKING CANCELATION BEHAVIOUR OF THE EUROPIAN HOTEL

Subject: - Statistics

Registration No: - 1160497 of 2020-2021

Roll No: - 1126116-200140

Session: - 2022-2023

PREDICTING THE HOTEL BOOKING CANCELATION BEHAVIOUR OF TWO EUROPIAN HOTEL

CONTENTS

- *** INTRODUCTOIN**
- *** PROBLEM SEGMENT**
- *** SOURCE OF DATA**
- *** DATA DESCRIPTION**
- *** DATA**
- *** GRAFICAL ANALYSIS ON VARIOUS FACTOR**
- * TESTING THE DEPENDENCY OF FACTOR WITH BOOKING CANCELATION
- *** FITING THE LOGISTIC REGRESSION**
- *** STEP REGRSION**
- * CONCLUSION
- *** REFERENCE**
- *** APPENDIX**

INTRODUCTION

For this project we will be analyzing the hotel booking data. This Dataset contains the booking information of two European hotel **City Hotel** and **Resort Hotel**. The dataset contain 118566 observation represent the hotel booking between the hotel booking between 1st July , 2015 to 31st august ,2017 The data includes the booking that effectively arrived and the booking that were canceled.

Hotel industry is a very volatile industry and the booking depends on various factor given in the dataset.

PROBLEM SEGMENT The main objective behind this project to explore and analyze data to discover the important factors in which the cancelation depends. And we want to fit a model on various factor to predict the guest booking behavior.

r Dome a rad
g Demand
d Luis Nunes

DATA POINT AND DESCRIPTION

- Hotel : Resort or city Hotel
- Is_canceled: value indicating if the booking was canceled (1) or not(0).
- Lead_time: the number of days that elapsed between entering the date of the booking and the arrival date.
- Market_segment : market segment designation .
- Distribution_chanel : booking distribution channel.
- Previous_booking: (0) represent the guest is new, the previous booking that not canceled by the customer (1) and previous booking that canceled by the customer (2)
- Reaserved_room_changes: if the guest getting the same reaserved room or other rooms.
- Deposit_type: No deposit (0), non refundable (1), refundable (2).
- Days_in_wating_list: the no of days the booking was in the waiting list before it was confirmed to the customer.
- Customer_type: type of customer. Contract, group, transient, transient-party.
- ADR: Average daily rates define by dividing the sum of all lodging transaction by the total no of staying nights.
- Required car parking space: the no of required car parking space by the customer.

DATA

						Reaserved		
hotel	is_canceled	lead_time	Booking_night	m.arket_segment	repetation_type	room_changes	days	_inw
City Hotel	0	3	5	Aviation	0	0		
City Hotel	0	1	1	Aviation	1	0		
City Hotel	0	194	194	Online TA	0	0		
City Hotel	0	194	194	Online TA	0	0		
City Hotel	0	74	74	Online TA	0	0		
City Hotel	0	84	84	Online TA	0	0		
City Hotel	0	74	74	Online TA	0	0		
City Hotel	0	76	76	Online TA	0	0		
City Hotel	0	83	83	Online TA	0	0		
City Hotel	0	28	28	Online TA	0	6		
City Hotel	0	6	6	Online TA	0	0		
City Hotel	0	5	5	Online TA	0	0		
City								
Hotel Resort	0	23	23	Direct	0	0		
Hotel	1	110	111	Online TA	0	0		

Among 118566 observation first 15 observation are presented in the observation

GRAFICAL ANALYSIS ON VARIOUS FACTOR

<u>♣ Booking cancelation vs lead time</u>

➤ In the billow table we arranged the observation of cancelation with respect to lead time

			Proportion_success_			Proportion success
lead_time	resort_0	reasort_1	reasort	city_0	city_1	city
0_100	19580	5216	0.789643	31753	14750	0.682816
101_200	5352	3207	0.625307	9300	8795	0.513954
201_300	2675	1960	0.577131	3259	4839	0.402445
301_400	900	669	0.573614	1257	3649	0.256217
401_500	393	913	0.300919	264	969	0.214112
above 500	68	412	0.141667	0	64	0

> X-square test

 H_0 : lead time and booking cancelation are independent.

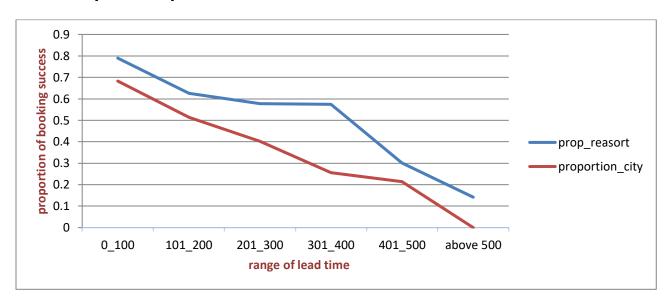
 H_1 : lead time and booking cancelation are dependent.

REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 3335.8, df = 5, p-value < 2.2e-16

We reject the null hypothesis.


City hotel:

Pearson's Chi-squared test

X-squared = 6270.9, df = 5, p-value < 2.2e-16

We reject the null hypothesis.

> Graphical representation

From the upper graph we can analysis that if lead time increases then the booking success rate decreases. We can also see that city hotel booking success rate is comparatively low with respect to resort hotel.

Booking cancelation vs booking nights

➤ In the billow table we arranged the observation of cancelation with respect to no of booking nights.

night_spen	city_	city_	proportion_success_c	reasort_	reasort_	proportion_success_reas
d	0	1	ity	0	1	ort
	4569	3277				
1_10	1	6	0.582296	27370	10632	0.7202253
11_20	153	240	0.389313	1089	406	0.7284281
above_20	7	50	0.122807	97	72	0.5739645

> X-square test

H₀: booking nights and booking cancelation are independent.

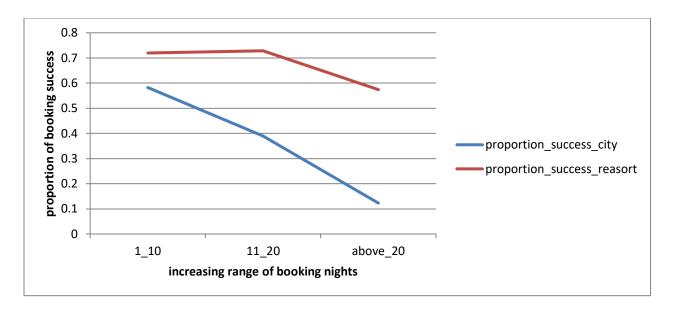
 H_1 : booking nights and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 109.02, df = 2, p-value < 2.2e-16

We reject the null hypothesis.


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 18.409, df = 2, p-value = 0.0001006

We reject the null hypothesis.

> Graphical representation

From the upper graph we can analysis that if booking night increases then the booking success rate decreases. We can also see that city hotel booking success rate is comparatively high than resort hotel with respect to no of booking nights.

Booking cancelation vs market segment

➤ In the billow table we arranged the observation of cancelation with respect to no of market segment

market							
_segment	city_0	city_1	proportion_success_city	reasort_0	reasort_1	proportion_success_re	asort
Aviation	180	51	0.779221				
Complementary	460	54	0.894942	168	33	0.83	5821
Corporate	2322	639	0.784195	1920	350	0.84	5815
Direct	4963	1053	0.824967	5556	877	0.86	3672
Groups	4335	9620	0.310641	3331	2473	0.57	3915
Offline TA/TO	9477	7166	0.569429	6271	1135	0.84	6746
Online TA	24096	14481	0.624621	11310	6242	0.64	4371
Undefined	0	2	0				

> X-square test

H₀: market segment and booking cancelation are independent.

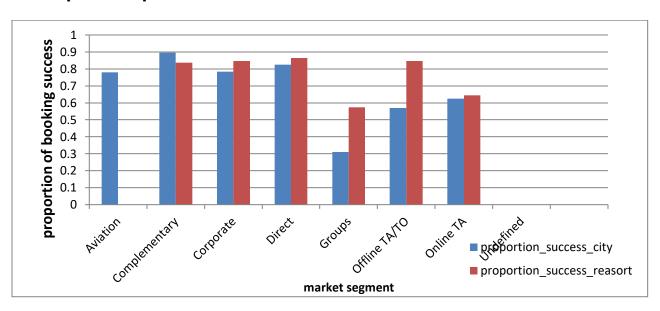
 H_1 : market segment and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

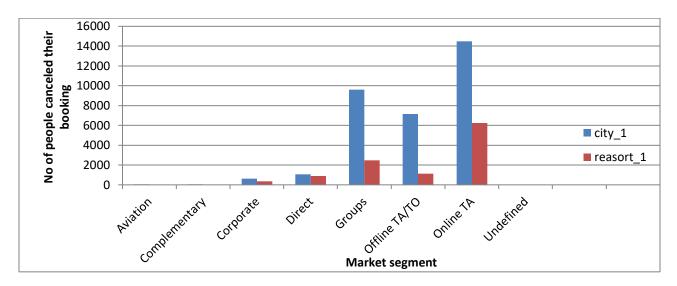
X.-squared = 6721.6, df = 7, p-value < 2.2e-16

We null hypothesis reject the


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 2540.1 , df = 5, p-value < 2.2e-16


We reject the null hypothesis.

> Graphical representation

From the upper graph we can analysis that most of the booking success rate in city hotel in those market segment (aviation, complementary, corporate and direct) and for the resort hotel most of the booking success rate in those market segment (complementary, corporate, direct and offline travel agent)

if lead time increases then the booking success rate decreases. We can also see that city hotel booking success rate is comparatively low with respect to resort hotel.

And by this graph most of the cancelation is done in through online offline and groups segment. And for reasort hotel online and groups and offline segment also.

- Booking cancelation vs previous booking behavior
- ➤ In the billow table we arranged the observation of cancelation with respect to previous booking behavior

PREVIOUS_T YPE	C_0	C_1	proportion_cancel _city	R_0	R_1	proportion_cancel_re asort	Percenta ge of guest
not repeted	4428 1	2798 2	0.387224	2642 0	1015 3	0.277609	92%
preveous not canceled	1187	68	0.054183	1966	33	0.016508	3%
preveous canceled	365	5016	0.932169	170	924	0.844607	5%

> X-square test

H₀: previous booking behavior and booking cancelation are independent.

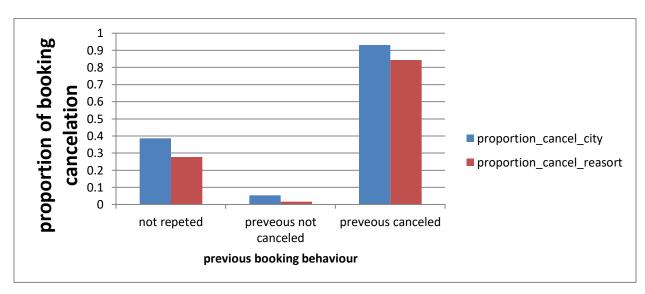
 H_1 : previous booking behavior and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 6806.4, df = 2, p-value < 2.2e-16

We reject the null hypothesis.


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 2418.9, df = 2, p-value < 2.2e-16

We reject the null hypothesis.

Graphical representation

In both hotel approximately 92% guest are not repeated and other 8% are repeated among which 3% are previous booking is not canceled and least 5% previous booking is canceled.

And by the upper graph we can analysis that in city hotel approximately 40% new guest are canceled their booking and in resort hotel approximately 37%.

And those who are previous booking is not canceled their cancelation rate very low in both hotel approximately less than 5%.

- Booking cancelation vs booking room changes
- ➤ In the billow table we arranged the observation of cancelation with respect to booking room and assigned room are same or not

				percent of				
ROOM	C_0	C_1	proportion_cancelation_city	changing	R_0	R_1	proportion_cancelation_re	asort
same	39279	32654	0.45395	91.17%	21448	10729	0.33	33437
change	6554	412	0.535764	9%	7108	381	0.42	16305

> X-square test

 H_0 : room changes and booking cancelation are independent.

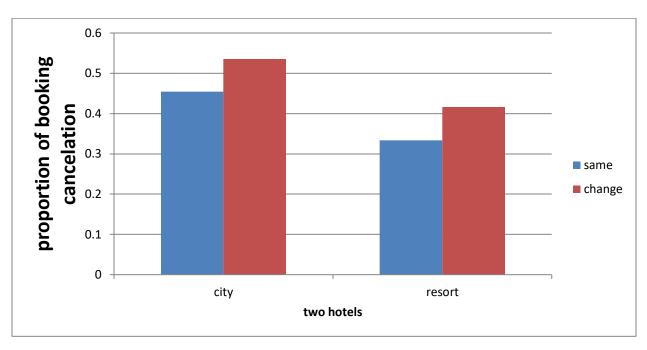
 H_1 : room changes and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 4066.214, df = 1, p-value < 2.2e-16

We reject the null hypothesis


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 2425.1, df = 1, p-value < 2.2e-16

We reject the null hypothesis

Graphical representation

In both city hotel and resort hotel approximately 91% and 81% time they got the same hotel which they are booked and in city hotel 45% guest canceled their booking although they are getting their same booked room and resort hotel canceled their booking although they are getting their same booked room. And if the room changes the cancelation of booking is comparatively go high.

- Booking cancelation vs Deposit type
- ➤ In the billow table we arranged the observation of cancelation with respect to deposit type

Row Labels	city _0	city _1	proportion_cance lation_city	percen t of changi ng	reasor t_0	reasor t_1	proportion_cancelat ion_reasort	percen t of changi ng
No Deposit Non	458 03	202 08 128	0.306131	83.67%	28367	9438	0.24965	95.31%
Refund	24	44	0.998135	16.31%	69	1650	0.95986	4.33%

> X-square test

H₀: deposit type and booking cancelation are independent.

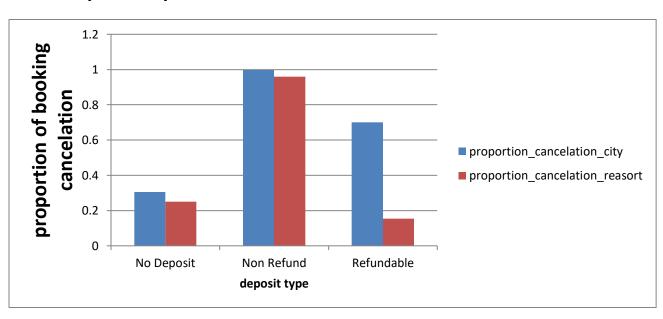
 H_1 : deposit type and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 21188, df = 2, p-value < 2.2e-16

We reject the null hypothesis


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 4124.1, df = 2, p-value < 2.2e-16

We reject the null hypothesis

> Graphical representation

In both city and resort hotel approximately 84% and 93% booking are done with no deposit and 16% and 4% booking are not refundable , other less than 1% booking are refundable

from the upper graph we can analysis that in city hotel approximately 30% guest are canceled their booking who does not give any deposit while booking and in resort hotel approximately 25%.

And those whose booking are non refundable in city hotel approximately 99% guest are canceled their booking and in resort hotel approximately 96% are canceled. And among refundable bookings 70% in city hotel and 15% in resort hotel cancel their booking.

Booking cancelation vs days in waiting list

➤ In the given table we arranged the observation of cancelation with respect to waiting days

wating_	city	city	proportion_cance	percen t of bookin	reasor	reasor	proportion_cancela	percen t of bookin
days	_0	_1	lation_city	g	t_0	t_1	tion_reasort	g
	447	307		95.64				
on date	36	24	0.407156	%	28320	11093	0.281455	99.36%
1_30	115	442	0.793537	0.71%	29	5	0.147059	0.09%
		106						
31_60	424	0	0.714286	1.88%	37	5	0.119048	0.11%
60_90	228	331	0.592129	0.71%	52	1	0.018868	0.13%
above								
90	330	511	0.60761	1.07%	117	6	0.04878	0.31%

> X-square test

 H_0 : waiting days and booking cancelation are independent.

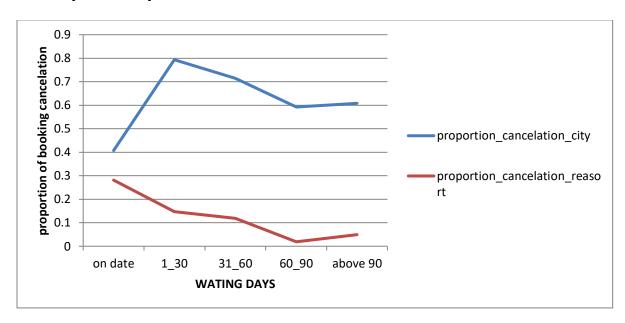
 H_1 : waiting days and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 1087.6, df = 4, p-value < 2.2e-16

We reject the null hypothesis


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 59.711, df = 4, p-value = 3.336e-12

We reject the null hypothesis

> Graphical representation

From the upper table we can say that in city hotel about 95% booking are completed on date and for resort hotel more than 99% booking are completed are on date

In city hotel the cancelation rate increases with respect to waiting days increases but other hand on resort hotel cancelation rate decreases with respect to increasing of waiting days.

Booking cancelation vs customer type

➤ In the billow table we arranged the observation of cancelation with respect to customer type

CUSTOME R_TYPE	C_0	C_1	proportion_ca ncelation_city	percent of booking	R_0	R_1	proportion_canc elation_reasort	percen t of bookin g
Contract	1184	1105	0.482744	2.90%	1610	157	0.088851	4.45%
Group	261	29	0.1	0.37%	250	29	0.103943	0.70%
Transient Transient-	31973	27066	0.458443	74.83%	20489	9407	0.314657	75.37%
Party	12415	4866	0.281581	21.90%	6207	1517	0.196401	19.47%

> X-square test

H₀: customer type and booking cancelation are independent.

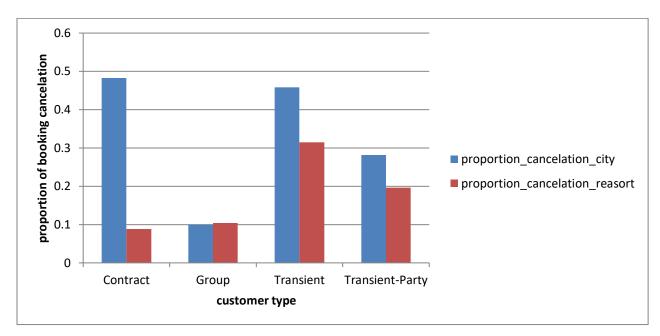
 H_1 : customer type and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 1877.1, df = 3, p-value < 2.2e-16

We reject the null hypothesis


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 808.88, df = 3, p-value < 2.2e-16

We reject the null hypothesis

> Graphical representation

Maximum customer in both hotel transient and transient-party type. In city hotel we can see higher cancelation rate in contract and transient type party and in resort hotel intransient and transient party type customer.

Booking cancelation vs ADR

➤ In the billow table we arranged the observation of cancelation with respect to ADR

				percen				
price			proportion_canc	t of bookin			proportion_cancel	percent of
Labels	c_0	c_1	elation_city	g	r_0	r_1	ation_reasort	booking
0_50	30304	24384	0.445875	69.31%	22480	9209	0.290606	79.89%
51_100	10967	6726	0.38015	22.42%	4502	1436	0.241832	14.97%
above								
100	4562	1956	0.300092	8.26%	1574	465	0.228053	5.14%

> X-square test

H₀: lead time and booking cancelation are independent.

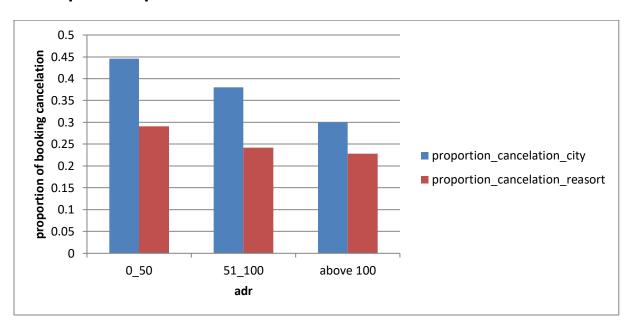
 H_1 : lead time and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 650.47, df = 2, p-value < 2.2e-16

We reject the null hypothesis


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 87.863, df = 2, p-value < 2.2e-16

We reject the null hypothesis

> Graphical representation

Maximum no of guest booked hotel in the price segment 0 to 50 dollar And the above diagram in the increases of price the cancelation rate decreases.

Booking cancelation vs no of car parking required

➤ In the billow table we arranged the observation of cancelation with respect to no of car parking required

car_par king	C_0	C_1	proportion_ca ncelation_city	percent of booking	R_0	R_1	proportion_ca ncelation_rea sort	percent of booking
0	43915	33066	0.429535	97.57%	23081	11110	0.324939	86.20%
1	1913	0	0	2.42%	5447	0	0	13.73%
2	3	0	0	0.00%	25	0	0	0.06%
3	2	0	0	0.00%	1	0	0	0.00%
8	0	0	0	0.00%	2	0	0	0.01%

> X-square test

H₀: **no of car parking required** and booking cancelation are independent.

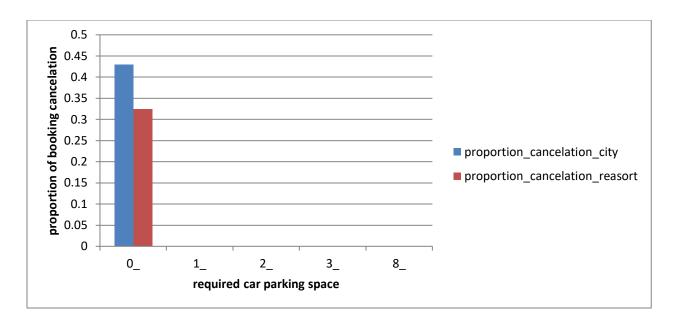
 H_1 : no of car parking required and booking cancelation are dependent.

City hotel:

Pearson's Chi-squared test

X-squared = 12530, df = 3, p-value < 2.2e-16

We reject the null hypothesis


REASORT HOTEL:

Pearson's Chi-squared test

X-squared = 87.863, df = 2, p-value < 2.2e-16

We reject the null hypothesis

> Graphical representation

From the upper dataset and diagram we can analyze that the guest who have single car they are looking for choices otherwise not.

Fitting the logistic regression

PROBABLITY CONCLUSSION

$$p/(1-p)$$
 = known as 'Odds'
$$ln[p/(1-p)] = u + b1 X1 + b2X2 + b3X3 +$$
 where, p = probability of accepting

Let,

$$ln[p/(1-p)] = Y = u + b1 X1 + b2X2 + b3X3 +$$

or, $p/(1-p) = e^y$
or, $p = e^y/(1+e^y)$

In this way we can obtain that a guest will cancel or not cancel his booking .

Let, H0: bi = 0 ag $H1: bi \neq 0$

Coefficients:

	Estimate Std.	Error	z value	Pr(> z)
(Intercept)	-2.908049	0.061208	-47.511	< 2e-16 ***
lead_time	0.193034	0.009485	20.351	< 2e-16 ***
night_spend	0.209675	0.048803	4.296	1.74e-05 ***
market_segmen	t 0.389321	0.008217	47.378	< 2e-16 ***
Previous booking	g 1.120974	0.025442	44.061	< 2e-16 ***
booking_change	s -0.518188	0.011892	-43.573	< 2e-16 ***
deposit_type	4.547851	0.065410	69.529	< 2e-16 ***
days_in_waiting	_list -0.0533	0.0214	93 -2.480	0.0131 *
customer_type	0.01520	0.014	963 1.016	0.3097
ADR	-0.011136	0.01372	8 -0.811	0.4173
Required_car_pa	arking -18.8342	243 46.7329	995 -0.403	0.6869

- > Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
- ➤ (Dispersion parameter for binomial family taken to be 1)
- Null deviance: 124336 on 94154 degrees of freedom
- ➤ Residual deviance: 87771 on 94144 degrees of freedom
- > AIC: 87793

Number of Fisher Scoring iterations: 16

 So by logistic regression we accept null hypothesis for customer_type, ADR , Required_car_parking_spaces at 5% level of significance

Conclusion

- ➤ Booking cancelation is increases instead of lead time increases that behave in both hotels.
- ➤ If the no of booking days increases then booking cancelation also increases. This cancelation rate is very high specifically for city hotel.
- ➤ Groups ,online, offline TA cancelation rate is high for both hotel and most of the guest comes from those segment . specifically city hotel management should be aware on this.
- In both hotel who are previously canceled the booking usually they are avoid to prefer this hotel again
- ➤ In both hotel if the booked room changes according to the customer preference then there is very low cancelation rate.
- ➤ Wonderfully for both hotel non-refundable booking cancelation rate is too high .And for city hotel refundable booking cancelation also too high.
- ➤ In city hotel increasing the days of waiting the cancelation rate is also increases but for resort hotel the cancelation rate decreases.
- ➤ For city hotel contractual and transient guest have higher cancelation rate. But for resort hotel transient guest comparatively high cancelation rate than others.

	ng price increases then the cancelation rate is also increases. who has more than one car they usually doesn't cancel their
booking	
THANK	CYOU