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a b s t r a c t 

An organic ligand, NL [4-(1-methylimidazole)-2,6-di(pyrazinyl)pyridine] has been synthesized and char- 

acterized by several spectroscopic methods. The ligand ( NL ) was then utilized for the preparation of two 

complexes, namely, [Cu( NL )(N 3 )(H 2 O)]ClO 4 ·H 2 O (complex 1 ) and {[Cu( NL )( μ- NL )NCS]ClO 4 } n (complex 2 ). 

The crystal structures of these complexes have been established by single-crystal X-ray analysis. Com- 

plex 2 exhibits a one dimensional (1-D) polymeric chain, whereas complex 1 is a mononuclear one. It is 

noteworthy that the change in auxiliary ligands exhibit structural variations and different supramolecular 

behaviors for the present complexes. Mainly, lone pair ···π (chelate ring) and π ···π (chelate ring) inter- 

actions are well investigated in governing the solid state architecture of complex 1 and 2 respectively. 

Besides, the other non-covalent interactions like π ···π stacking, sulphur (lone pair) ···π and hydrogen 

bonding interactions play crucial role in the crystal packing for both the complexes. In complex 1 , a 

chair-like perchlorate–water tetrameric cluster, [(ClO 4 ) 2 –(H 2 O) 2 ] 
2 −was observed. The aim of this work is 

to investigate the role of chelate rings in producing supramolecular architectures of both the complexes 

in the solid state. Theoretical (DFT) calculations including QTAIM and NCI Plot index were carried out to 

analyze the non-covalent interactions in the solid state for both the complexes. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Supramolecular chemistry deals with the design, synthesis and 

elf-assembly of well-defined molecular components into tailor- 

ade architectures by using intermolecular interactions [1–3] . 

rystal engineers always help to study various intermolecular in- 

eractions in the journey from molecule to crystal in the solid 

tate [4–7] . Over the last few years, crystal engineering has ma- 

ured enough and interplayed between structure and properties 

f molecules in a programmed way [8–10] . However, finding of 

ew interactions by creative and intellectual way in designing and 

uilding crystal architecture is one keen interest in crystal engi- 

eering. 

Hydrogen bonding has been extensively well studied as it uni- 

ersally exists in both natural and artificial substances [ 11 , 12 ].

ot only hydrogen bonds but also other dispersive interactions 
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ike π ···π stacking, anion ···π and lone pair ···π interactions play 

 decisive role in nucleation and growth of molecular crystals 

n recent years [13–21] . Among those, lone pair ···π interaction 

s a significant binding mode which plays a key role in stabiliz- 

ng the structures of nucleic acids and modulating the recognition 

f protein DNA and enzyme substrates [22–24] . Recently, the at- 

ention has shifted toward more unconventional interactions such 

s π (arene) ···π (chelate ring), π (chelate ring) ···π (chelate ring), 

one pair ···π (chelate ring), C 

–H ···π (chelate ring), etc. interactions 

hich have been proven to have equal or even dominating contri- 

utions to molecular crystal formation [25–34] . Chelate rings are 

ecognized to exhibit metallo-aromatic behavior and undoubtedly 

hey can take part in similar interactions to their organic coun- 

erparts [ 35 , 36 ]. In the context of supramolecular architecture of 

oordination compounds, contribution of chelate ring (formed by 

etal coordination using heterocyclic π-systems) assisted interac- 

ions have arrested recent interest of researchers. 

As an NNN-tridentate ligand, terpyridine plays an important 

ole in supramolecular chemistry as well in coordination chem- 

stry due to its π stacking ability among themselves and excel- 
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ent chelating capability with various metal cations [37] . Terpyri- 

ine or their structural analogs show very high binding potential- 

ty towards transition metal ions due to cis, cis arrangement of the 

hree nitrogen atoms and d π−p π ∗ back bonding of the metal to 

yridine rings [38] . However, they always prefer to adopt a pla- 

ar geometry to achieve maximum conjugation in the complexes 

39] . Terpyridine metal complexes have been synthesized and de- 

eloped rapidly for their potential applications in several fields, 

or instance, photovoltaic devices [ 40 , 41 ], DNA bindings [ 42 , 43 ],

ensors [ 44 , 45 ], photo-sensitizers [ 46 , 47 ], catalysis [ 4 8 , 4 9 ], metal-

rganic framework (MOF) construction [ 50 , 51 ], and many more 

52] . Recently, increasing attention has been paid to the synthe- 

is of 4 ′ -substituted terpyridine complexes with potential appli- 

ations in accessing new classes of functional materials possess- 

ng photo-physical and electrochemical properties [53–56] . As ter- 

yridines are generally neutral during complex formation, ancil- 

ary ligands like pseudo halides (azido, thiocyanato, etc.) are of- 

en employed to sustain electrical neutrality. Azido (N 3 
−) and thio- 

yanato (SCN 

−) pseudo halide ions have also been extensively used 

s bridging ligands in the construction of coordination compounds 

ue to their diversity of bonding modes with 3d metal complexes 

57–62] . As a terminal ligand, the coordination mode of SCN 

− de- 

ends on the electronic nature and oxidation state of the metal ion 

63] . Besides, other factors like steric effect, type of solvent, non- 

oordinated ions and even electronic nature of the auxiliary lig- 

nds can influence the coordination mode of the thiocyanato lig- 

nd, particularly when the metal ion has intermediate hard −soft 

cid character [64] . Azido and thiocyanato copper(II) complexes 

ith trigonal bipyramidal (TBP) or square pyramidal (SP) geom- 

try have already gained much attention for the last few years 

ut, there still remains much more work to be explored. Among 

he investigated metals, Cu(II) containing complexes have received 

ncreasing attention due to their promising applications in vari- 

us fields such as catalysis, energy harvesting devices, medicinal 

hemistry and in related areas in the recent past [65–72] . After 

ron and zinc, copper is the third most abundant transition metal 

n the human body and plays an important role in hemopoiesis, 

etabolism, growth and immune system [ 73 , 74 ]. Most importantly, 

he reversible change of the oxidation state of Cu(I)/Cu(II) couple 

nder physiological conditions has promoted the development of 

etal complexes with an active redox chemistry within cancer- 

us cells [ 75 , 76 ]. Besides, compared to other common metal ions,

u(II) ion exhibits high binding constant with various ligands in 

hemical and biological systems [ 77 , 78 ]. Keeping all these factors 

n mind, two new Cu(II) complexes have been synthesized based 

n 4-(1-methylimidazole)-2,6-di(pyrazinyl)pyridine ( NL ) with aux- 

liary ligands azido (for complex 1 ) and thiocyanato (for complex 

 ) in aqueous medium (Scheme S1). Both the complexes adopt dis- 

orted square pyramidal (SP) geometry where the title ligand, ( NL ) 

cts as an NNN-tridentate ligand. In both the complexes, the ligand 

 NL ) coordinates the Cu(II) ion through three coplanar ligating sites 

nvolving one pyridyl nitrogen atom (N3) and two pyrazinyl nitro- 

en atoms (N5 and N6) forming two five-membered chelate rings 

Scheme S1). The metallo-aromatic nature of the chelate rings 

ives rise to the possibility of alternative π-systems which play an 

mportant role in producing various supramolecular architectures 

or both the complexes in the solid state. Interestingly, a dimer is 

haped by two symmetrically equivalent lone pair ···π (chelate ring) 

nteractions between lone pair on azide nitrogen atom (N8) and 

g(2) chelate ring in complex 1 . From the structural database sur- 

ey, it is evident that the lone pair ···π (chelate ring) interactions 

nvolving halogen atoms (Cl, Br, I) are common but to the best of 

ur knowledge the engagement of pnictogen atom like nitrogen in 

one pair ···π (chelate ring) interaction is comparatively less familiar 

127–131] . In complex 1 , the perchlorate anion is involved in the 

ormation of a tetrameric anion −water cluster, [(ClO 4 ) 2 –(H 2 O) 2 ] 
2 −, 
2 
hich is less frequent. To our knowledge, a few perchlorate −water 

etrameric clusters have been characterized in the solid state [79–

1] . For complex 2 , the influence of π ···π (chelate ring) and sul- 

hur(lone pair) ···π interactions have been well established in the 

rystal packing. Finally, the present work utilizes DFT calculations 

nd several computational tools (QTAIM and NCI Plot) to analyze 

he noncovalent interactions focusing on lone pair ···π (chelate ring) 

nd π ···π (chelate ring) interactions in stabilizing the solid state 

rchitectures of both the complexes. We have also evaluated ener- 

etically how the presence of the perchlorate −water cluster influ- 

nces the crystal packing of complex 1 in the solid state. 

. Experimental sections 

.1. Materials and apparatus 

All the chemical reagents (analytical grade) and solvents (spec- 

roscopic grade) were purchased from commercial suppliers and 

sed without any further purification. Freshly boiled double dis- 

illed water was used throughout the synthetic procedure and all 

he reactions were carried out under aerobic conditions. Elemental 

nalyses (C, H and N) were performed using a PerkinElmer 2400 

eries-II CHN analyzer, USA, elemental analyzer. ESI mass spectra 

ere obtained from a Water HRMS model XEVO-G2QTOF#YCA351 

pectrometer. 1 H NMR and 

13 C NMR spectra were obtained 

rom Bruker spectrometer (300 MHz) with CDCl 3 solvent using 

rimethylsilane (TMS) as an internal standard. Fourier transform in- 

rared (FT-IR) spectra were recorded on a Perkin Elmer LX-1 FT-IR 

pectrophotometer (40 0 0 −40 0 cm 

−1 ) by using a modern diamond 

ttenuated total reflectance (ATR) accessory method. 

.2. Syntheses 

.2.1. Synthesis of 4-(1-methylimidazole)-2,6-di(pyrazinyl)pyridine 

NL] 

Acetylpyrazine (0.305 g, 2.5 mmol) was added into 30 mL 

thanolic solution of 1-methyl imidazole-2-carboxaldehyde (0.11 g, 

 mmol). 3 mL of 1 (M) aqueous solution of NaOH was added drop 

ise into the reaction mixture at room temperature ( Scheme 1 ). 

hen 5 mL aqueous NH 3 (35%) solution was discharged into the 

asic solution at a time. The reaction mixture was then refluxed 

or 3 h. After completion of the reaction, solution was cooled at 

oom temperature. A light-yellow solid formed which was col- 

ected by filtration and washed repeatedly with coldwater and 

ried in air. The desired product was obtained with good yield 

nd acceptable purity, Yield 0.214 g (68%). Anal. calc. for C 17 H 13 N 7 ,

 64.75, H 4.16, N 31.09. Found: C 64.12, H 3.89, N 30.79%. 1 H

MR (300 MHz, CDCl 3 ): δ (ppm) = 9.85 (s, 2H), 8.83 (s, 2H), 8.65

s, 4H), 7.24 (s, 1H), 7.09 (s, 1H), 3.99 (s, 3H) (Fig. S1). 13 C NMR

75 MHz, CDCl 3 ): δ (ppm) = 154.50, 150.46, 144.93, 143.70, 143.48, 

40.37, 129.60, 124.24, 120.55, 35.17 (Fig. S2). Main FT-IR absorp- 

ions, (KBr, cm 

−1 ): 1980(s), 1606(vs), 1570(vs), 1519(s), 1464(s), 

456(s), 1419(s), 1371(vs), 1292(s), 1257(s), 1224(s), 1120(vs) (Fig. 

3). ESI-MS: m/z 316.12, calcd. for [C 17 H 13 N 7 + H ] + 316.13 

Fig. S4). 

.2.2. Synthesis of [Cu(NL)(N 3 )(OH 2 )]ClO 4 ·H 2 O(complex 1) 

An aqueous suspension (15 mL) of the ligand, NL (0.0315 g, 

.1 mmol) was added drop wise to 15 mL of aqueous 

u(ClO 4 ) 2 ·6H 2 O (0.0370 g, 0.1 mmol) solution with constant stir- 

ing. An aqueous solution (5 mL) of NaN 3 (0.0065 g, 0.1 mmol) 

as added and stirred for 3 h ( Scheme 2 ). Then the solution was

ltered and the filtrate was left for slow evaporation without any 

isturbance. After one-week, deep green X-ray quality crystals of 1 

ere isolated (yield: 68%). Solubility of the complex was checked 

n some common solvents for further applications and found to 
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Scheme 1. Synthetic route for the ligand, NL . 

Scheme 2. Schematic representations of the synthesis of complex 1 and 2 . 
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e insoluble in water and methanol whereas completely soluble 

n acetonitrile, DMSO and DMF. Anal. calc. for C 17 H 17 CuN 10 ClO 6 : 

, 36.70; H, 3.08; N, 25.17. Found: C, 36.63; H, 2.99; N, 25.13%. 

ain FT-IR absorptions, (KBr, cm 

−1 ): 3543(w), 3469(s), 3229(w), 

139(vs), 3102(s), 2050(vs), 1614(vs), 1590(s), 1557(s), 1496(s), 

470(vs), 1433(s), 1408(s), 1340(s), 1299(s), 1283(s), 1227(s) 

Fig. S5). 

.2.3. Synthesis of {[Cu(NL)( μ-NL)NCS]ClO 4 } n (complex 2) 

An aqueous suspension (15 mL) of the ligand, NL (0.0315 g, 

.1 mmol) was added drop wise to 15 mL aqueous Cu(ClO 4 ) 2 ·6H 2 O

0.0370 g, 0.1 mmol) solution at stirring condition. An aque- 
3

us solution (5 mL) of NaSCN (0.0081 g, 0.1 mmol) was added 

nd stirred for 4 h ( Scheme 2 ). Then the solution was fil-

ered and the filtrate was left undisturbed for slow evapora- 

ion. Two weeks later, deep brown X-ray quality crystals of 2 

ere obtained (yield: 63%). The complex 2 was insoluble in 

ater and methanol, partly soluble in acetonitrile and com- 

letely soluble in DMSO as well as in DMF. Anal. calc. for 

 18 H 13 CuN 8 SClO 4 : C, 40.30; H, 2.44; N, 20.89. Found: C, 40.25;

, 2.39; N, 20.85%. Main FT-IR absorptions, (KBr, cm 

−1 ): 3218(s), 

114(bs), 2100(vs), 2047(vs), 1611(s), 1599(s), 1554(s), 1497(s), 

470(s), 1423(s), 1406(s), 1332(vs), 1298(s), 1288(s), 1225(s) 

Fig. S6). 
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Fig. 1. Asymmetric unit of complex 1 . 
(Caution! Salts of perchlorate and azide are potentially explosive. 

nly small amounts of materials should be prepared and to be han- 

led with extreme care) . 

.3. X-ray crystallography analysis 

Single crystal X-ray data were collected by using a Bruker 

MART APEX II CCD area detector equipped with a graphite 

onochromated Mo Ka radiation ( λ = 0.71073 Å) source in ϕ and 

 scan mode at 296 K for both the complexes. Cell parameter re- 

nement and data reduction for both the complexes were carried 

ut using a Bruker SMART APEX II instrument and Bruker SAINT 

oftware [82] . The crystal structures of both the complexes were 

olved by SHELXT-2014/5 and refined by full-matrix least squares 

n F 2 techniques using the SHELXL-2016/6 crystallographic soft- 

are package [ 83 , 84 ]. The CIFs have been deposited with CCDC No.

096470 (complex 1 ) and CCDC No. 2096471 (complex 2 ). Selected 

rystal structure refinement parameters for 1 and 2 are given in Ta- 

le S1. The important bond lengths and bond angles are included 

n Tables S2 and S3, respectively for the title complexes. 

.4. Computational methods 

The non-covalent interactions were analysed energetically us- 

ng Gaussian-16 [85] at the PBE0-D3/def2-TZVP level of theory. The 

inding energies have been corrected using the Boys and Bernardi 

ounterpoise method [86] . The Grimme’s D3 dispersion correction 

as been also used in the calculations [87] . To evaluate the interac- 

ions in the solid state, the crystallographic coordinates were used 

nd only the position of the hydrogen bonds has been optimized. 

his methodology [ 88 , 89 ] and level of theory [90–100] (functional 

nd basis set) have been previously used to analyze non-covalent 

nteractions in the solid state. The interaction energies were esti- 

ated by calculating the difference between the energies of the 

solated monomers and the ones of their assembly. For the calcu- 

ations, the monomeric Cu(II) species were considered as doublets 

one unpaired electron) and the dimers as triplets (two unpaired 

lpha electrons). The NCI plot [101] isosurfaces have been used to 

haracterize non-covalent interactions. They correspond to both fa- 

orable and unfavorable interactions, as differentiated by the sign 

f the second density Hessian Eigen value and defined by the iso- 

urface color. The color scheme is a red-yellow-green-blue scale 

ith red for ρ+ 
cut (repulsive) and blue for ρ−

cut (attractive). 

. Results and discussion 

.1. Synthesis and IR spectroscopic characterization 

The copper(II) complexes 1 and 2 were prepared by using 

ewly synthesized 4-(1-methylimidazole)-2,6-di(pyrazinyl)pyridine 

 NL ] moiety as the main ligand with different auxiliary ligands 

azide anion for 1 and thiocyanato anion for 2 ) at room tem- 

erature in aqueous medium ( Scheme 2 ). Strategically 1:1:1 mo- 

ar ratio was maintained to synthesize the mixed ligand com- 

lexes (to avoid bis-terpyridine complexes) having product stoi- 

hiometry Cu(II): NL : N 3 
− = 1:1:1 for complex 1 and Cu(II): NL :

CN 

− = 1:1:1 for complex 2 . Interestingly, when sodium azide 

NaN 3 ) was used as the auxiliary ligand in combination with the 

L ligand, the formation of the mononuclear complex 1 was ob- 

erved, while similar reaction condition with sodium thiocyanate 

NaSCN) results in the 1D coordination polymeric complex 2 . Both 

he complexes were isolated as air stable green colored crystalline 

olids in good yields (68% for 1 and 63% for 2 ). Hence, the synthe-

is presented herein composed of copper(II) perchlorate as a metal 

ource and NL as a primary ligand, together with easily accessi- 

le and cheap auxiliary ligands (N 

−and SCN 

−) in a simple one- 
3 

4 
ot synthetic procedure for engineering of diverse metal-organic 

ssemblies in organic-solvent-free medium. 

The molecular structures of the title complexes have been es- 

ablished by single crystal X-ray analysis and supported by IR spec- 

roscopy. The IR spectrum of complex 1 shows typical ν(OH) vibra- 

ions in the 3543 −3229 cm 

−1 range for both coordinated and non- 

oordinated water molecules. Besides, the complex 1 displays a 

ery sharp νas (N 3 ) band with maximum at 2050 cm 

−1 , while that 

t 1340 cm 

−1 is presumably associated with the νs (N 3 ) vibration. 

he presence of auxiliary NCS ligand in complex 2 is confirmed 

ith the detection of a very intense νas (CN) band at 2047 cm 

−1 

ith a shoulder at 2100 cm 

−1 , which are typical for the termi- 

al N-bonded isothiocyanate moieties [ 57 , 102–105 ]. In addition, 

he ν(CH) vibrations are detected in the range of 3218 −3102 cm 

−1 

or both the complexes. The observed stretching frequencies for 

as (N 3 ) and νas (CN) in our complexes ( 1 and 2 ) are in good agree-

ent with some reported Cu(II) complexes which are summarized 

n Table S4. 

.2. Structural description of complex 1 

The asymmetric unit of complex 1 with the atom number- 

ng scheme is shown in Fig. 1 . The formula unit of complex 

 shows one monomeric cationic [Cu(C 17 H 13 N 7 )(N 3 )(H 2 O)] + unit, 

ne non-coordinated perchlorate anion and one non-coordinated 

ater molecule. The complex crystallizes in a triclinic system 

ith the space group P ̄ı and its unit cell contains two formula 

nits. The coordination mode around the metal center can be 

est described as a distorted square pyramid [ τ value [106] is 

.0213 (ideally 0 for perfect square pyramidal geometry and 1 

or trigonal bipyramidal geometry), eq S1] where the equato- 

ial plane is shaped by the three pyrazinyl nitrogen atoms (N3, 
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Fig. 2. Perspective view of the formation of a 2-D architecture through π ···π stacking and C –H ···O hydrogen bonding interactions in complex 1 . 

Fig. 3. Perspective view of 2-D supramolecular network through π ···π stacking and C –H ···N hydrogen bonding interactions in complex 1 . 
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a

t

5 and N6) of the ligand ( NL) and one nitrogen atom (N8) 

f azide anion. The apical position is occupied by one oxygen 

tom (O5) of a water molecule. Here the ligand ( NL ) is able

o bind the Cu(II) ion to produce two five-membered chelate 

ings, (Cu1/N3/C7/C17/N6) and (Cu1/N3/C8/C10/N5) having bite an- 

les [N3 –Cu1 –N6 = 79.28(9) ° and N3 –Cu1 –N5 = 79.42(8) °] re-

pectively. The average distance of Cu 

–N bonds in the equatorial 

lane is 1.988 Å [Cu1 –N5 = 2.042(2) Å, Cu1 –N6 = 2.044(2) Å,

u1 –N3 = 1.9431(19) Å and Cu1 –N8 = 1.923(3) Å]. The axial Cu–

 bond is comparatively longer [Cu1 –O5 = 2.224(2) Å] than the 

quatorial Cu 

–N bonds and is expected as the axial bond utilizes 

ore ‘p’ character of the orbital in forming the bond, which makes 

he axially coordinated water oxygen atom more electronegative 

107] . The Cu(II) ion is deviated by a distance of 0.259 Å towards

he axial water oxygen atom (O5) from the equatorial plane (N3, 

5, N6 and N8). The dipositive charge on the metal center is sta- 

ilized by one coordinated azide anion and one non-coordinated 

erchlorate anion. 

The solid-state structure of complex 1 is stabilized through 

he combination of C 

–H ···N, C 

–H ···O, O 

–H ···N, O 

–H ···O hydrogen

onds along with π ···π stacking and lone pair ···π (chelate ring) 

nteractions (Table S5 and S6). In the first architecture ( Fig. 2 ), the

onomeric unit of complex 1 propagates to produce a 1-D poly- 

eric chain through a π ···π interaction (Table S6) between Cg(3) 

f one unit with Cg(5) of the other unit with a ring separation dis- 
5 
ance of 3.4928(19) Å. Now, perchlorate ions connect these paral- 

el 1-D chains through C2 –H2 ···O1 (169 °) and C14 –H14 ···O4 (154 °)
ydrogen bonding interactions at (-x, 1-y, 2-z) and (1-x, 1-y, 1-z) 

espectively; thus leading to the formation of a 2-D architecture in 

he bc -plane. 

A different 2-D layer is generated through π ···π stacking and 

 

–H ···N hydrogen bonding interactions ( Fig. 3 ) for complex 1 . The

elf-complementary nature leads the molecules to form a dimer 

hrough π ···π interaction between Cg(5) and Cg(6) of two dif- 

erent units. The inter-planar spacing between Cg(5) and Cg(6) 

s 3.8956(18) Å. Interconnection of the dimers through another 

elf-complementary Cg(3) –Cg(6) interaction ( π ···π stacking) which 

eads to form an infinite chain along the [010] direction. The sep- 

ration distance between Cg(3) and Cg(6) is 3.642(2) Å. Due to 

he self-complementary nature, the parallel chains are again inter- 

inked through weak C13 –H13 ···N10 hydrogen bond by generating 

 R 2 
2 (14) ring motif. Here, the aromatic fragment (C13 –H13) of one 

nit acts as donor to the azide nitrogen atom (N10) of adjacent 

nit at (2-x, 2-y, 1-z) with an angle of 130 ° All these interactions 

re cumulatively associated to extrapolate the dimensionality from 

-D to 2-D in the ab -plane (as shown in Fig. 3 ). 

A comprehensive analysis exhibits a dimeric distribution 

shown in Fig. 4 ) that is formed by two symmetrically equiv- 

lent lone pair ···π (chelate ring) interaction in complex 1 . Here, 

wo monomeric units are arranged almost in opposite orienta- 
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Fig. 4. Dimeric distribution in complex 1 through lone pair ···π (chelate ring) inter- 

actions. 

Fig. 5. Formation of anion–water cluster by strong O –H ···O hydrogen bonding in- 

teractions in complex 1 . 
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ion one above the other to achieve a self complementary lone 

air ···π (chelate ring) interaction between lone pair on azide ni- 

rogen atom (N8) and Cg(2) chelate ring (Cu1/N3/C8/C10/N5) hav- 

ng a shortest separation distance of 3.070 Å. The Cu ···Cu separa- 
Fig. 6. Perspective view of 2-D arrangement incorporating π ···π , lone pai

6 
ion in this dimeric integrity is 3.917 Å which suggests that there 

ay be some type of weak metal ···metal interaction to stabilize 

his dimeric form [108] . 

The solvent water molecules not only tie up themselves for the 

ormation of clusters but also suitable anions participate in the as- 

embly process to satisfy donor −acceptor balance and thus con- 

truct anion −water clusters [ 109 , 110 ]. It is worth mentioning that, 

he behavior of hydrated anion is quite different from that of bare 

nion or anion in nonpolar media. Thus, studies of anion −water 

lusters are vitally important in understanding the hydration phe- 

omena of both organic and inorganic anions in nature as well 

s in biochemistry. In complex 1 , a chair-like perchlorate–water 

etrameric cluster, [(ClO 4 ) 2 –(H 2 O) 2 ] 
2 −, is decorated due to the self- 

omplementary nature of intermolecular hydrogen bonding inter- 

ctions between two free water molecules and two perchlorate an- 

ons (as depicted in Fig. 5 ). Here, the non-coordinated water oxy- 

en atom O(6) acts as double donor to the oxygen atoms O(2) 

nd O(4) of perchlorate ion in the complex at (169 °) and (153 °) 
espectively; thus forming a R 4 

4 (12) ring motif (Table S5). It was 

ell established that the lower H ···A separation and the D–H ···A 

ngle close to 180 ° indicate the stronger hydrogen bonding in- 

eraction. Here, the O6 –H6A ···O2 interaction is relatively stronger 

han that of O6 –H6B ···O4 interaction as the former interaction has 

ower H ···O distance (2.0 Å) compared to other (2.23 Å) and O–

 ···O angle close to 180 °. The O ···O separation distances within 

he tetramer in the range of 2.839(6)–3.006(8) Å, which is longer 

han the value in ice I c (2.75 Å) and ice I h (2.759 Å), but can be

ompared with the corresponding values observed in liquid wa- 

er (2.854 Å) [ 111 , 112 ]. Interestingly, the perchlorate −water clus- 

er helps in growth of the molecular crystal by filling the void 

paces present in complex 1 (as shown in Fig. 6 ). We have stud- 

ed the mutual influence of the hydrogen bonding interactions in 

he perchlorate −water cluster by means of QTAIM analysis (shown 

n Fig. 16 ). 

The lone pair ···π (chelate ring) along with π ···π stacking and 

ydrogen bonding interactions play a decisive role in building the 

upramolecular arrangement ( Fig. 6 ). The dimeric units (as de- 
r ···π (chelate ring) and hydrogen bonding interactions in complex 1 . 
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Fig. 7. Formation of 1-D tape by hydrogen bonding interactions in complex 1 . 
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icted in Fig. 4 ) are interlinked by a self complementary π ···π
nteraction between Cg(3) and Cg(6) of two different units lead- 

ng the formation of a 1-D chain along [010] direction. The sepa- 

ation distance between Cg(3) and Cg(6) ring centriods is 3.642(2) 
˚
 (Table S6). Now, these 1-D parallel chains are further connected 

y the anion–water cluster (shown in Fig. 5 ) to generate the 2- 

 arrangement in the bc -plane. Here, the water-anion clusters are 

nterconnected with the dimeric units by the self complementary 

trong O5 –H5A ···O6 (175 °) and comparatively weak C1 –H1C ···O3 

158 °) hydrogen bonding interactions (Table S5) as shown in Fig. 6 . 
Fig. 8. One-dimensional (1-D) zigzag polymeric chain along th

7 
Two monomeric units of complex 1 are interconnected by the 

elf complementary C1 –H1B ···N4 (133 °) hydrogen bonding interac- 

ions (Table S5) to form another dimer having R 2 
2 (20) ring motif 

 Fig. 7 ). The dimeric units are further interlinked through the self 

omplementary O5 –H5A ···N2 [165(5) °] hydrogen bonding interac- 

ions where coordinated water oxygen atom (O5) acts as donor to 

he imidazole nitrogen atom (N2) in the molecule at (1 + x , y, z).

epetition of this R 2 
2 (20) ring motif along [100] direction leads the 

olecules to generate a 1-D tape as shown in Fig. 7 . 

.3. Structural description of complex 2 

The complex 2 is a coordination polymer ( Fig. 8 ) and the 

symmetric unit of the complex with the atom numbering 

cheme is depicted in Fig. 8 . In this polymeric chain the asym- 

etric units are connected along the (010) direction through 

yrazine nitrogen atom (N4) of the second ligand ( NL ). Single- 

rystal X-ray diffraction study shows that the complex 2 adopts 

 monoclinic system with the space group P 2 1 /c and its unit 

ell contains four formula units. In the complex, the central 

u(II) ion is situated in a distorted square pyramidal geome- 

ry ( τ = 0.1218, eq S1) where the equatorial plane is formed 

y the three pyrazinyl nitrogen atoms (N3, N5 and N6) of the 

igand ( NL ) and one nitrogen atom (N8) of thiocyanate anion. 

he apical position is occupied by another nitrogen atom (N4) 
e [010] direction and the asymmetric unit of complex 2 . 
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Fig. 9. Perspective view of 2-D layer generated through π ···π interactions in complex 2 (aromatic hydrogen atoms have been omitted for clarity). 

Fig. 10. Formation of a 2-D assembly through π ···π interactions in complex 2 (aromatic hydrogen atoms have been omitted for clarity). 

o
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f the second NL ligand. Here, two five-membered chelate rings 

(Cu1/N3/C7/C17/N6) and (Cu1/N3/C8/C10/N5)] are formed with 

ite angles [N3 –Cu1 –N6 = 80.11(9) ° and N3 –Cu1 –N5 = 79.08(8) °]
espectively. The average distance of Cu 

–N bonds in the equato- 

ial plane is 1.996 Å [Cu1 –N6 = 2.050(2) Å, Cu1 –N3 = 1.932(2) Å,

u1 –N5 = 2.0 6 6(2) Å and Cu1 –N8 = 1.937(3) Å]. The Cu(II) ion
8 
s deviated by a distance of 0.204 Å towards the apical nitrogen 

tom (N4 b , b = 1 − x , 1/2 + y , 3/2 − z ) from the equatorial plane

N3, N5, N6 and N8). The axial Cu 

–N bond is comparatively larger 

Cu1 –N4 b = 2.277(2) Å] than the other equatorial Cu 

–N bonds 

ikely due to the more ‘p’ character of the orbital involved in the 

xial bond. The electrical charge on the metal center is taken care 
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Fig. 11. Perspective view of 2-D architecture through sulphur(lone pair) ···π interactions in complex 2 (aromatic hydrogen atoms have been omitted for clarity). 
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y one coordinated thiocyanate ion and one non-coordinated per- 

hlorate ion. 

In the solid state, the complex 2 is stabilized through C 

–H ···O 

ydrogen bonds in addition with π ···π stacking, π ···π (chelate 

ing), anion ···π and lone pair ···π interactions (Tables S5-S7). The 

arallel 1-D zigzag chains are interlinked through face to face 

···π interaction to build a 2-D layered structure ( Fig. 9 ) in the 

c -plane. The π ···π interaction was executed between Cg(3) of 

ne complex unit and Cg(3) of the other unit with the shortest 

entroid–centroid distance of 3.3969(19) ̊A (Table S5). 

Fig. 10 shows that the 1-D parallel chains are interlinked 

hrough the self-complementary π ···π stacking interactions be- 

ween Cg(3) of one complex unit and Cg(6) of the other unit to 

orm another two-dimensional (2-D) assembly in the ab -plane hav- 

ng an inter-planar spacing of 3.6803(18) Å (Table S6). 

Again, the 2-D assembly is further stabilized by the lone 

air ···π interactions (shown in Fig. 11 ). The sulfur atom (S1) ap- 

roaches (bifurcated) towards π-faces of two different Cg(5) units 

t ( −1 + x , y, z) and (-x, 1/2 + y , 3/2-z) with angles of 110.53(11) °
nd 95.28(10) ° respectively (Table S7). For having a good sul- 

hur(lone pair) ···π interaction, the S ···π distance should be less 

han the sum of their van der Waals radii (3.70 Å). Here, the 

verage distance between sulfur atom (S1) and Cg(5) centroid is 

.543 Å; thus suggesting a significant lone pair ···π interaction. 

hough the sulphur(lone pair) ···π interaction is comparatively less 

requent but it has been well appreciated in biological and model 

ystems [113–116] . 
9 
In the Fig. 12 , the complex units of 2 (extracted from the poly- 

eric chain) ensure to propagate a 1-D polymeric chain through 

···π (chelate ring) interaction (shown by orange dotted lines) be- 

ween Cg(3) of one unit and Cg(1) (chelate ring) of the adjacent 

nit separated at a distance of 3.4980(16) Å (Table S6). The paral- 

el chains are interconnected through C11 –H11 ···O3 (119 °) hydro- 

en bond (shown in aqua dotted line) and anion ···π interaction 

shown in pink dotted line). The said anion ···π interaction involves 

ne oxygen atom (O1) of the ClO 4 
− anion and Cg(6) of the adja- 

ent complex unit at (1-x, −1/2 + y , 3/2-z) with a shortest sep- 

ration distance of 3.022(3) Å. Therefore, the influence of the un- 

onventional π ···π (chelate ring) interactions along with anion ···π
nd C 

–H ···O hydrogen bonding interactions is responsible in build- 

ng the extended 2-D architecture in the ab -plane ( Fig. 12 ). 

.4. Theoretical study 

PBE0-D3/def2-TZVP calculations have been used to study the 

helate ring (CR) interactions described above that are relevant for 

he crystal packing of compound 1 . Compound 2 is a polymer and 

ts solid-state architecture is basically governed by coordination 

onds. In this case the theoretical study is limited to the charac- 

erization of the interactions described above in Fig. 12 using the 

CI plot index analysis. 

The molecular electrostatic potential (MEP) surface of com- 

ound 1 (including the counter ion and water molecule) has been 

rstly computed to analyze the most nucleophilic and electrophilic 
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Fig. 12. Perspective view of 2-D architecture incorporating π ···π , anion ···π and C –H ···O hydrogen bonding interactions in complex 2 (other aromatic hydrogen atoms have 

been omitted for clarity). 
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arts of the molecules. As expected, the most negative MEP values 

re located at the perchlorate anion (–74 kcal/mol). The MEP values 

t the N-atoms of the azido ligand are also negative (–15 kcal/mol). 

he maximum MEP value ( + 75 kcal/mol) is located in a cleft that 

s under the influence of two aromatic H-atoms and one aliphatic 

-atom (methyl group of the imidazole ring). The MEP values over 

he aromatic rings of the ligand are also large and positive, ranging 

rom + 21 to + 47 kcal/mol. The MEP value over the chelate ring

hat is more distant from the perchlorate anion is also large and 

ositive ( + 43 kcal/mol), thus adequate for interacting with elec- 

ron rich atoms (as shown in Fig. 13 ). 
ig. 13. MEP surface (isosurface 0.001 a.u.) of compound 1 at the PBE0-D3/def2- 

ZVP level of theory. The MEP values at selected points of the surfaces are given in 

cal/mol. 

f

T

t

t

c

e

t

i

f

i

v

l

l

e

o

w

a

a

d

b

w

t

c

10 
The ion-pair nature of compound 1 anticipates a dominant role 

f electrostatic effects in its crystal packing. This is supported by 

he MEP surface analysis which shows the maximum and mini- 

um MEP values located at the cationic and anionic moieties, re- 

pectively. In general, pure electrostatic forces are very strong and 

on-directional. Therefore, the final orientation of the cations and 

nions in the solid state is often influenced by other forces that 

re weaker but able to tune the final geometry of the assemblies 

ound in their crystal structure. 

As aforesaid in the structural description of 1 ( Fig. 4 ), this com-

ound forms interesting self-assembled dimers governed by the 

ormation of two symmetrically equivalent lp ···π (CR) interactions. 

his DFT study is mainly focused on the investigation of this in- 

eraction. Fig. 14 shows the self-assembled dimer where, in addi- 

ion to the lp ···π (CR) interactions, two anti-parallel displaced and 

onventional π ···π interactions are formed. The dimerization en- 

rgy is very large (–26.6 kcal/mol) due to the contribution of both 

ypes of π-stacking interactions. It should be mentioned that this 

nteraction has been computed as a dimer where each monomeric 

ragment includes the water molecule and the perchlorate counter 

on. Therefore, the H-bonds are not evaluated (considered as pre- 

iously formed). In an effort to evaluate the contribution of the 

p ···π (CR) interaction, we have used a reduced model where the 

igand has been simplified (see Fig. 14 b). Consequently, the en- 

rgy is only reduced to –21.9 kcal/mol that is a rough estimation 

f the lp ···π (CR) interaction. Such large interaction energy agrees 

ell with the MEP surface analysis shown in Fig. 13 that evidences 

 large and positive MEP value over the chelate ring and negative 

t the azido ligand. Therefore, it dominates the formation of this 

imer. The contribution of the conventional π ···π interactions can 

e estimated by difference, i.e. –4.7 kcal/mol, that is significantly 

eaker than the lp ···π (CR) interactions with the shortest centroid- 

o-centroid distances (see Fig. 14 a). 

The large dimerization energy obtained for the dimer of 1 is 

omparable to other interactions where anti-parallel π-stacking 

http://dx.doi.org/10.13039/501100004171
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Fig. 14. (a) Dimer of compound 1 , π-stacking interactions shown as black dashed lines (distances in Å) (b) Reduced model of compound 1 used to estimate the lp ···π (CR) 

interaction. 
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nteractions in metal complexes with large and conjugated π- 

ystems. It has been rationalized considering the large dipole mo- 

ents of the metal complexes that are very polarized. For in- 

tances π-stacking interactions ranging from –25 to –35 kcal/mol 

ave been reported for similar systems [117–125] . 

We have also computed the “Non-covalent Interaction plot”

NCI plot) index in order to characterize both types π- π stacking 

nteractions in compound 1 . The NCI plot index is an intuitive vi- 

ualization index that facilitates the visualization of non-covalent 

nteractions and shows which molecular regions interact. The color 

cheme is a red-yellow-green-blue scale with red (repulsive) and 

lue (attractive). Yellow and green surfaces correspond to weak re- 

ulsive and weak attractive interactions, respectively. Fig. 15 shows 

he NCI plot index analysis of the self-assembled dimer of com- 

ound 1 using two different perspectives. The NCI plot reveals the 
ig. 15. NCI surface of the π-stacked assembly compound 1 using perspective (a) 

nd on-top views (b) The gradient cut-off is ρ = 0.04 a.u., isosurface s = 0.35, and 

he color scale is −0.04 a.u. < ρ < 0.04 a.u. 

Fig. 16. Partial views of the solid state X-ray structures of refcodes KEYCAU (a) and 

KAHXID (b). Distances in Å. H-atoms omitted for clarity. 

Fig. 17. QTAIM distribution of intermolecular bond critical points (small red 

spheres) and bond paths in the H-bonding assembly compound 1 . The dissociation 

energy of each H-bond is indicated adjacent to each bond critical point. 

11 
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Fig. 18. NCI surface of the π-stacked assembly compound 2 using two different perspective views (a,b), (the gradient cut-off is ρ = 0.04 a.u., isosurface s = 0.35, and the 

color scale is −0.04a.u. < ρ < 0.04 a.u). 
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ormation of green and extended isosurfaces upon dimerization 

hat are located between the chelate rings and the N-atoms of the 

zido ligand, thus confirming the existence of the unconventional 

p ···π (CR) interaction. Moreover, the NCI plot also shows green iso- 

urfaces located between the pyrazine aromatic rings, thus also 

onfirming the existence of anti-parallel and displaced π ···π stack- 

ng interactions. The NCIplot analysis also reveals a large and green 

sosurface between both Cu(II) ion, thus suggesting some type of 

etal ···metal interaction that likely contributes to the large dimer- 

zation energy of the reduced model shown in Fig. 14 b. 

We have explored the Cambridge structural database (CSD) in 

rder to investigate the prevalence of N 3 ···π (CR) interaction in Cu 

omplexes with five membered (unsaturated) chelate rings. We 

ave found only five structures in the CSD presenting similar LP ···
(CR) interactions, which are summarized in Table 1 . The LP ···
(CR) interactions were not described by their original authors. 

he Cg ···N distances are gathered in Table 1 , which range from 

.938 to 3.016 Å, similar to the distance observed in compound 1 

3.070 Å). Two representative structures from this search are rep- 

esented in Fig. 16 . In KEYCAU structure, a self-assembled dimer 

s formed in the solid state that is very similar to that found 

n compound 1 (see Fig. 4 ) where two symmetrically equivalent 

P ···π (CR) interactions are formed. The other structure forms in- 

nite 1D supramolecular assemblies in the solid state where the 

omplex propagates in one direction due to the formation of the 

P ···π (CR) interactions. It is interesting to highlight that in all 

tructures the LP-donor N-atom is the one that is coordinated to 

he Cu-atom. 

The H-bonding network (anion −water cluster) described above 

n Fig. 5 has been also analysed theoretically using the quantum 

heory of atoms in molecules (QTAIM). The distribution of bond 

ritical points and bond paths is represented in Fig. 17 along with 

he individual H-bond formation energies derived from the poten- 

ial energy density predictor (E dis = ½∗V r ) proposed by Espinosa 

t al. [131] Each H-bond is characterized by a bond critical point 

onnecting the H to the O-atom. The stronger H-bond corresponds 
able 1 

SD reference codes of Cu-complexes exhibiting N 3 ···π (CR) interactions. The dis- 

ance from the N-atom to the ring centroid (Cg) is also indicated. 

Ref. code d(Cg ···N), Å Reference 

FIBGIH 2.964 [ 126 ] 

KAHXID 2.940 [ 127 ] 

KEYKAU 3.000 [ 128 ] 

KUCFIZ 2.938 [ 129 ] 

LEXPAH 3.016 [ 130 ] 
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12 
o the one established between the coordinated and uncoordinated 

ater molecules (5.4 kcal/mol) likely to the enhanced acidity of 

he water protons due to the coordination to Cu(II) metal cen- 

er. The uncoordinated water molecule also establishes two addi- 

ional H-bonds as donor with the perchlorate anions, one is strong 

5.3 kcal/mol) and the other is more modest (2.7 kcal/mol) in 

greement with the experimental bond angles as well as separa- 

ion distances (Table S5). Finally, the QTAIM analysis further dis- 

loses the existence of C–H ···O interactions between one aromatic 

-atom of the ligand and the perchlorate anion. The interaction 

nergy of this H-bond is the weakest one (2.0 kcal/mol). The total 

ormation energy of this assembly is very large (–30.8 kcal/mol), 

hus confirming the importance of these H-bonding network in the 

rystal packing of compound 1 , in addition to the antiparallel π- 

tacking interactions described in Fig. 14 . 

Since compound 2 is a coordination polymer, we have used a 

imeric model extracted from the polymeric chain (see Fig. 18 ) 

here pyrazine rings act as apical ligands for the Cu-atoms. The 

CIplot analysis of the dimer is represented in Fig. 18 that re- 

eals that the SCN ligand establishes conventional lp–π interac- 

ions with the aromatic rings. Since there is not a NCIplot iso- 

urface located between the chelate ring and the SCN ligand, this 

nalysis suggests that the chelate ring is not involved in the bind- 

ng mechanism. In contrast, it reveals the existence of π ···π (CR) 

nteractions involving the five membered imidazole ring and the 

helate ring (see Fig 18 b). It is characterized by a green and ex- 

ended NCIplot index isosurface that embraces the chelate ring and 

art of the fused pyrazine ring. 

. Concluding remarks 

In conclusion, we have successfully synthesized two Cu(II) 

omplexes (complex 1 and 2 ) using 4-(1-methylimidazole)-2,6- 

i(pyrazinyl)pyridineas the backbone ligand with two different 

uxiliary ligands, established their solid-state crystal structures by 

ingle crystal X-ray diffraction study and explored the noncovalent 

nteractions associated with their crystal structures. The structural 

nsights reveal that intermolecular hydrogen bonding (C 

–H ···N, 

 

–H ···O, O 

–H ···N, O 

–H ···O), π ···π , π ···π (chelate ring), anion ···π , 

one pair ···π and lone pair ···π (chelate ring) interactions play a sig- 

ificant role in crystal packing of the complexes in the solid state. 

 DFT study has been used to evaluate the cooperative influence of 

nconventional lone pair ···π (CR) and conventional π ···π stacking 

nteractions in the dimeric distribution of complex 1 quantitatively 

nd demonstrating that the former is stronger. Besides, the large 

ormation energy of the perchlorate-water cluster (–30.8 kcal/mol) 

onfirms its decisive role in the self assembly of complex 1 . The 
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ulfur (lone pair) ···π and π ···π (CR) interactions play a lead role in 

he crystal packing of complex 2 . The NCI plot index also exhibits 

he involvement of chelate ring to stabilize the crystal structures of 

he complexes significantly. Therefore, the present study undoubt- 

dly helps to gain knowledge in this rising area of supramolec- 

lar chemistry. Finally, the CSD search discloses the existence of 

P(N 3 ) ···π (CR) in a few structures. However, further investigation 

n this topic will be conducted to extend the analysis to other ele- 

ents, LP donors and ring sizes. 
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