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Abstract
The criterion for thermodynamic stability of rotating electrically charged quantum black holes was already derived by us. 
They appeared as a collection of inequalities connecting second-order derivatives of the black hole mass with respect to its 
horizon area, electric charge and angular momentum. We got similar results when this analysis was extended to black holes 
in arbitrary dimensional spacetime with any number of parameters that determine the mass of the black hole. Many black 
holes were shown to satisfy some of the stability criteria in certain regions of parameter space, but not all together. They are 
known as “Quasi Stable” black holes. Quasi stability restricts the accessibility of parameter space; hence, it creates bounds 
on various parameters of the quasi-stable black holes. They, although decaying under Hawking radiation, possess bounded 
fluctuations in certain regions of their accessibility for some of their parameters. We here consider Kerr–Newman and 
Kerr–Sen black holes as examples of two quasi-stable black holes. Their fluctuations are shown to be related to the bounds in 
parameter space. We also study the decay rate in various regions of their parameter spaces. We conclude that they transform 
to different kinds of black holes during their Hawking decay.

Keywords  Black hole thermodynamics · Quasi-stability · Quantum black holes · Black hole transformation · Phase 
transition

1  Introduction

The application of Einstein’s general theory of relativity 
concludes that a black hole is capable of accreting anything 
in its vicinity [1]. Thus, black holes grow in size forever. 
However, Hawking showed, using his semi-classical theory 
[2], that black holes were capable of radiating matter. Hence, 
there is a competition between accretion and radiation within 
a black hole. Thus, when accretion wins the black hole 
grows in size forever; otherwise when Hawking radiation 
wins, the black hole decays. Hence, a black hole reaches 
its stable equilibrium only when a perfect balance between 
accretion and radiation exists.

We have already shown, treating spacetime as a quantum 
mechanical entity, that the stability criteria of a black hole 
appear as a collection of inequalities, involving the param-
eters of that black hole [3, 4]. If all the stability criteria hold 

simultaneously for a black hole within some region of its 
parameter space, then that black hole is thermodynamically 
stable in that region. Similarly, a black hole may satisfy the 
series of stability criteria partially within a certain region 
of parameter space. Then that black hole is quasi-stable in 
that region of parameter space. Actually both ’stability’ and 
’quasi-stability’ concern a region of parameter space.

Fluctuations of the parameters of any stable black hole, 
for example, horizon area, angular momentum and electric 
charge for charged rotating AdS black holes, have already 
been calculated [5] by us. They are bounded in the region 
of stability of the parameter space. In fact, bounded fluctua-
tions, like that of a stable black hole, are observed for some 
parameters of quasi-stable black holes as well [6, 7]. This 
is an artifact of the fact that some of their stability crite-
ria are satisfied in certain region of parameter space. Now, 
quasi-stability restricts the accessible region in the param-
eter space for such black holes, as beyond this they would 
be unstable. However, this restriction has certain relations 
with the fluctuations of their various parameters. We study 
this here in detail for two quasi-stable black holes, namely 
a Kerr–Newman black hole (KNBH)and a Kerr–Sen black 
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hole (KSBH). We find that both charge and angular momen-
tum have to be reduced for Kerr–Newman black holes, but 
such applies only to the angular momentum for Kerr–Sen 
black holes.

That quasi-stable black holes have to decay under Hawk-
ing radiation is undoubtedly true , but their similarities with 
stable black holes in terms of their fluctuations cast a doubt 
on us, whether quasi-stability can reduce their decay rate. 
We show that this is indeed true for both KNBH and KSBH. 
We also show that these fluctuations ultimately help to trans-
form a KNBH into a neutral non-rotating black hole whereas 
a KSBH is transformed into a non-rotating charged black 
hole.

This paper is organized as follows. A brief necessary 
recapitulation of previous works is presented in Sect. 2. 
The following section shows the details of fluctuations for 
KSBHs and KNBHs. Thermodynamic transformations of 
these black holes are also studied here. We draw a connec-
tion between the decay rate and quasi-stability of these black 
holes in Sect. 4. The last section contains a summary with 
an outlook.

2 � Thermal stability and thermal fluctuation

Semiclassical analyses predict thermal instability under 
Hawking radiation for asymptotically flat black holes due to 
the negativity of their specific heat [8]. These analyses con-
sider positivity of the specific heat as the sole criterion for 
thermal stability of any black hole. These semiclassical theo-
ries treat only matter as a quantum entity, but black holes are 
still classical. We had focussed on this issue in our earlier 
works [3, 4], from a scheme independent perspective, but 
motivated by some results of LQG [9, 10]. Loop Quantum 
Gravity (LQG) played only a motivational role there. The 
work that we had done there, is actually independently of 
LQG. That work is justified on the ground that LQG might 
provide situations where these assumptions are valid.

Thus, a study of the thermodynamic stability under 
Hawking radiation of a rotating charged black hole from 
this quantum perspective would be interesting. A rotating 
charged black hole is classically characterized by its mass 
(M), angular momentum (J) and charge (Q). Thus, we 
intuitively expect that these parameters will play equally 
important role in determining the thermodynamic behavior 
of such black holes, even when analyzed from a quantum 
perspective. The mass of a charged rotating black hole, on its 
horizon, depends classically on its horizon area (A), charge 
(Q) and angular momentum (J). We assume an equivalent 
relationship for our quantum analysis, i.e.,the mass is a func-
tion of the horizon area, angular momentum and charge.

Black holes, at equilibrium, are represented here by iso-
lated horizons that act as internal boundaries of spacetime. 

The description of the horizon, as given in detail in Ref. [3], 
helps us to define mass, electric charge, angular momentum, 
etc. on the horizon. The tensor product of the boundary and 
the bulk spacetime becomes the Hilbert space for a generic 
quantum spacetime. By virtue of some physical invariances 
of bulk spacetime, bulk states are completely decoupled, so 
only the boundary states determine the whole grand canoni-
cal partition function ( ZG ) of a black hole if we assume the 
black hole is in contact with a thermodynamic heat bath that 
exchanges mass, angular momentum(J) and charge(Q) with the 
black hole. This has been discussed in detail in Ref. [3]. Thus, 
ZG is expressible as [3]

where g(k, l, m) is the degeneracy factor associated with the 
energy eigenvalue E(Ak,Ql, Jm) and k, m, l are, respectively, 
the discrete quantum numbers attached to the eigenvalues 
of area, angular momentum and charge [11]. � , Φ and Ω , 
respectively, denote the inverse temperature, electric poten-
tial and angular speed of the black hole. The spectrum of the 
boundary Hamiltonian operator is expectantly assumed here 
to be a function of area, angular momentum and charge of 
the horizon. Motivated by LQG results, we consider these 
’quantum parameters’ to have discrete spectra [11, 15]. 
We, applying the Poisson resummation formula [16], can 
re-express ZG in the macroscopic spectra limit of the black 
hole(k, l,m >> 1 ) as,

where, following Ref. [17], S(A) denotes the microcanonical 
entropy of the horizon.

The saddle point ( Ā, Q̄, J̄ ) represents the black hole in its 
thermodynamic equilibrium [3]. J̄ denotes the angular momen-
tum of the horizon at equilibrium and so on. ZG is calculated 
for fluctuations a = (A − Ā) , j = (J − J̄) and q = (Q − Q̄) 
around the saddle point and is given as ([3])

where � denotes the inverse temperature of the black hole.
The stability criteria, equivalent to convexity of the above 

integral, have been shown to be given as follows [3]:

(1)

ZG =
∑
k,l,m

g(k, l,m) exp
(
−�

(
E(Ak,Ql, Jm) − ΦQl − ΩJm

))
,

(2)

ZG = ∫ dA dQ dJ exp [S(A) − �(E(A,Q, J) − ΦQ − ΩJ)],

(3)

ZG ≈ ∫ da dq dj exp

(
−
�

2

[(
MAA −

SAA

�

)
a2

+(MQQ)q
2 + (2MAQ)aq + (MJJ)j

2 + (2MAJ)aj + (2MQJ)qj
])
,
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where |H| is the determinant of the Hessian matrix (H), 
which is given as

Here, MAA ≡ �2M

�A2
 , MAQ ≡ �2M

�A�Q
 etc., and they are all calcu-

lated at the saddle point. The above inequalities are really 
some inequalities among the parameters of the black hole. 
The note is that the saddle point is actually the equilibrium 
point of the black hole. Thus, all the terms MAA , MQQ , etc., 
are measured at equilibrium. Then, ZG is evaluated, consid-
ering up to Gaussian fluctuations, as in ordinary thermody-
namics. Thus, that ZG is grand canonical partition function 
within small neighborhood of the equilibrium point is true. 
If the fluctuations are bounded enough, then the black hole 
is in stable equilibrium. On the other hand, if at least one 
fluctuation is unbounded, then the black hole will drift away 
from the equilibrium point. This, in turn, causes ZG to 
diverge and makes the black hole unstable around that equi-
librium, i.e., unstable equilibrium. Of course, ZG cannot 
predict anything more for unstable black holes, away from 
the equilibrium point. In fact, we are not interested in any-
thing beyond what ZG predicts. We should admit the fact that 
thermodynamics does not give much if we are away from the 
equilibrium point. We will see later that this ZG is capable 
of predicting phase transitions for unstable black holes as 
well.

The inverse temperature �(= SA∕MA) is taken to be posi-
tive. The note is that the entropy of the black hole (S) is 
taken to be a function of its horizon area (A) only. We see 
here that there are many stability criterion rather than a sole 
condition of positivity of specific heat, which is predicted 
by semiclassical analyses. An asymptotically flat Reiss-
ner–Nordstrom black hole (AFRNBH) and some other black 
holes decay under Hawking radiation in some region of its 
parameter space in spite of its positive specific heat [18, 20]. 
Because an AFRNBH is still electrically unstable in that 
region, it decays.

Some rotating charged black holes satisfy some of the 
stability criteria, but not all, within a certain region of 
parameter space. These black holes are quasi-stable within 
that region. We have already [6, 7] studied asymptotically 
flat Kerr–Newman (KN) and Kerr–Sen (KS) black holes as 
examples of quasi-stable black holes. |H| is always nega-
tive for them. Hence, they cannot be stable. However, MQQ , 

(
𝛽MAA − SAA

)
> 0,MQQ > 0,MJJ > 0(

MQQMJJ − (MJQ)
2
)
> 0,

(
MJJ

(
𝛽MAA − SAA

)

−𝛽(MAJ)
2
)
> 0,

(
MQQ

(
𝛽MAA − SAA

)
− 𝛽(MAQ)

2
)
> 0

|H| > 0,

H =

⎛
⎜⎜⎝

�MAA − SAA �MAQ �MAJ

�MAQ �MQQ �MJQ

�MAJ �MJQ �MJJ

⎞
⎟⎟⎠
.

MJJ , 
(
MQQMJJ − (MJQ)

2
) are always positive for them. Thus, 

they are always quasi-stable, irrespective of their position in 
parameter space.

We already know [6] the mechanism for calculating the 
fluctuations. Δ(J)2 measures the fluctuation of angular 
momentum from its equilibrium value and can be mathemat-
ically expressed as [5, 6] Δ(J)2 = ∫ da dq dj j2f (a,q,j)

∫ da dq dj f (a,q,j)
 , where 

f (a, q, j) = exp
(
−

�

2
[(MAA −

SAA

�
)a2 + (MQQ)q

2 + (2MAQ)aq

+(MJJ)j
2 + (2MAJ)aj + (2MQJ)qj]

) . Δ(Q)2 and Δ(A)2 are 
defined similarly. To calculate and conclude that Δ(A)2 con-
verges to the value �

2(MQQMJJ−(MJQ)
2)

2|H|  , only if (MQQMJJ−(MJQ)
2)

|H|  is 
positive is easy. Otherwise, Δ(A)2 would diverge. Δ(Q)2 and 
Δ(J)2 are calculable similarly in a cyclic manner. Thus, we, 
if |H| is always negative, can conclude the following. 

(1)	� Δ(A)2 always diverges as 
(
MQQMJJ − (MJQ)

2
)
 is always 

positive.
(2)	� Δ(Q)2 is bounded only if 

(
(�MAA − SAA)MJJ − �(MJA)

2
)
 

is negative; otherwise, it diverges.
(3)	� Δ(J)2 is bounded only if 

(
MQQ(�MAA − SAA) − �(MAQ)

2
)
 

is negative; otherwise, it diverges.

3 � Fluctuations of parameters 
and thermodynamic transformation 
of quasi‑stable black holes: two examples

We will consider here examples of two quasi-stable, charged, 
rotating black holes explicitly. We will show in detail how 
these fluctuations vary with the regions of parameter space. 
We will conclude thereafter that these fluctuations and some 
bounds in parameter space together are responsible for pos-
sible transformations of these black holes from one type to 
another type.

3.1 � Kerr–Newman black hole

The mass (M) of a KNBH is related to its parameters as [21],
M2 =

A

16�
+

�

A
(4J2 + Q4) +

Q2

2
Thus, the accessible parameter space is defined by the 

inequality 
(
4J2 + Q4

)
<

A2

16𝜋2
 as the temperature(∝ MA ) of a 

non-extremal black hole is always positive. Thus, both the 
electric charge and the angular momentum are bounded for a 
given horizon area of the black hole. |H| is always negative; 
hence, this black hole will decay under Hawking radiation 
and will consequently lose area. Hence, charge and angu-
lar momentum will adjust, through their fluctuations, to 
maintain the above bound. This bounded region is shown 
in Fig. 1.

We define the function fAQ as
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fAQ ≡ 9

32
y3 − 34x2y3 + 9x2y2 + 9x2y −

7

8
y4 − 13y5 −

3

64
y2 −

3

12
y +

x2

16
+ 6x4 + 72x4y −

1

2048
,

where x ≡ �J

A
 , y ≡ �Q2

A
.

Now, that 
(
MQQ(�MAA − SAA) − �(MAQ)

2
)
 is proportional 

to fAQ can easily be shown. In Fig. 2, we show the region of 
parameter space where fAQ is negative, i.e. the region where 
the fluctuation of angular momentum is bounded. Figure 2 
clearly indicates that higher values of J

A
 , of course maintain-

ing the bound, cause the fluctuation of the angular momen-
tum to be large. The area of this black hole always decreases 
and, consequently, tries to increase the ratio J

A
 . This causes 

the fluctuation of the angular momentum to be appreciably 
large; hence, the angular momentum is reduced to maintain 
the non-extremality bound. Thus, the J

A
 ratio comes in the 

region shown in Fig. 2; and hence, J does not fluctuate much. 
However the area(A), as usual, decreases gradually; conse-
quently, the J

A
 ratio becomes large enough so that J starts to 

fluctuate appreciably once again. Thus, this switching of the 
J

A
 ratio from a larger to a smaller value and vice versa contin-

ues. In this process, angular momentum gradually decreases 

during Hawking decay. Thus, this KN black hole transforms 
into a non-rotating black hole.

We now define the function fAJ as
fAJ ≡ 5

8
y2 + 7y4 + 4y3 − 16x2 −

1

256
,

where x, y are defined as earlier. Now, that (
MJJ(�MAA − SAA) − �(MAJ)

2
)
 is proportional to fAJ can be 

shown easily. In Fig. 3, we show the region of parameter 
space where fAJ is negative, i.e., region where fluctuations 
of the charge of a black hole are bounded.

Figure 3 shows vividly that higher values of Q
2

A
 can make 

the charge fluctuation bounded only if the ratio J
A
 is high 

enough. However, we have already shown that the ratio J
A
 

cannot always be high. On top of this, the ratio Q
2

A
 is itself 

bounded. Hence, Q reduces gradually during Hawking decay 
as the black hole always decreases in area. Thus, the ratio 
Q2

A
 oscillates between higher and lower values, as the ratio 

J

A
 does, and gradually discharges all its charges. Hence, a 

Fig. 1   Pictorial representa-
tion of a region of temperature 
positivity

Fig. 2   Pictorial representation 
of a region of bounded fluctua-
tions of angular momentum
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KNBH loses its charge during Hawking decay. As a result, 
it transforms into a chargeless black hole. Thus, a KN black 
hole ultimately transforms into a chargeless, non-rotating 
black hole. Moreover, interestingly, one simple bound on 
parameter space, namely positivity of the temperature, turns 
out to determine the end state of a black hole. This makes 
the thermodynamic analysis robust. Of course, that vari-
ous non-perturbative quantum gravity-related issues will be 
important during the black hole’s end state is true. A ther-
modynamic analysis alone, without a study of full-fledged 
quantum gravity at that stage, cannot predict anything. In 
fact, this is yet to be done in literature. Nevertheless, we can 
still predict things close to the end state of black hole cor-
rectly just by doing a thermodynamic analysis.

Now, we find that the common region, where both fAJ and 
fAQ are negative, is the region where both Δ(Q)2 and Δ(J)2 
are bounded. Figure 4 shows that both Δ(J)2 and Δ(Q)2 are 
bounded when both the ratios J

A
 and Q

2

A
 are sufficiently small. 

In fact, this is the region where both charge and angular 
momentum stay at their equilibrium values. This region is 
near the endpoint of the black hole, where it almost loses 

all its charge and angular momentum. However, at the time, 
various other quantum gravity factors, as mentioned earlier, 
may play important roles as well.

3.2 � Kerr–Sen black hole

The mass(M) of a KSBH is related to its parameters as [22]
M2 =

A

16�
+

Q2

2
+

4�J2

A
.

Thus, the accessible physical parameter space is defined 
by the inequality J

A
<

1

8𝜋
 as any non-extremal black hole 

always has a positive temperature(∝ MA ). Interestingly the 
electric charge of this black hole, unlike an AFKNBH, is 
not bounded by the non-extremality of this black hole. We 
will see its interesting consequences soon. Now the quan-
tity 

(
MQQ(�MAA − SAA) − �(MAQ)

2
)
 is negative for J

A
<

0.4

8𝜋
 

whereas 
(
(�MAA − SAA)MJJ − �(MJA)

2
)
 is always negative. 

Hence, both Δ(Q)2 and Δ(J)2 are bounded in the region 
J

A
<

0.4

8𝜋
 . Thus, a perfect equilibrium is maintained between 

outgoing and incoming quanta for both charge and angular 
momentum in that region. However, equilibrium is lost for 
only angular momentum in the region 0.4

8𝜋
<

J

A
<

1

8𝜋
 . The 

Fig. 3   Pictorial representation 
of a region of bounded fluctua-
tions of charge

Fig. 4   Pictorial representation 
of region of bounded fluctuation 
for both angular momentum and 
charge
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KSBH ultimately decays due to an unbounded area fluctua-
tion, but we will see soon that the decay rate slows in certain 
regions of parameter space.

If the angular momentum (J) lies in the region J
A
<

0.4

8𝜋

 , 
then J does not fluctuate much as its fluctuation is bounded 
there. However, the area (A) decreases as usual and causes J

A
 

to be greater than 0.4
8�

 . Once this happens, large fluctuations 
of J begin, but positivity of the temperature restricts the 
ratio J

A
 to be lower than 1

8�
 with decreasing area (A). Hence, 

J reduces to make the ratio J
A
 smaller than 0.4

8�
 . This process 

repeats. Hence, a KSBH reduces its angular momentum to 
satisfy its extremality bound during the Hawking decay, as 
the black hole gradually loses area and angular momentum, 
keeping the charge unchanged. As a result, it proceeds to 
transform into a black hole with charge only. This transfor-
mation is purely thermodynamic in nature. Therefore, we 
find the difference between a KS and a KN black holes in 
terms of their closeness to their end states.

That a KS black hole, unlike a KN black hole, hardly 
discharges throughout its life is important to note. One has 
to go back to the construction of the grand canonical parti-
tion to understand this. We, in this analysis, have assumed 
the mass of a rotating charged black hole to be a function of 
its area, angular momentum and charge. In any theory, these 
are good self-adjoint operators. Although mass is not a good 
primary operator, we can still represent it as a secondary 
operator in terms of other primary operators. Hence, we here 
consider fluctuations of area, charge and angular momentum 
only. In semiclassical analyses, one gets many constraints on 
the parameter space from the condition of avoiding a naked 
singularity. We, in a thermodynamic analysis, equivalently 
obtain similar constraints from the condition of avoiding 
absolute zero temperature. Semiclassically, a charged rotat-
ing KN black hole has been shown to lose its charge and 
angular momentum [23], just from the condition of vari-
ous restrictions on the parameter space. We here also obtain 
similar results for KN black holes, just from the condition 
of various restrictions on the parameter space imposed by 
positivity of the temperature. However, this analysis is a bit 
interesting for a KS black hole. Positivity of the temperature 
does not put any bound on its electric charge. Close to the 
end state, this black hole loses almost all its angular momen-
tum. The area also becomes comparable to the Planck area 
[24]. Hence, its mass is approximately given as M2 ≈

Q2

2
 . 

This is very similar to stable, extremal black holes with mag-
netic monopoles. Of course, the last example is the outcome 
of a semiclassical analysis, where the mass of this black 
hole in the limiting case is given as M2 ≈ P2 , where P is the 
magnetic charge. We compare our thermodynamic analysis 
with well-known semiclassical analyses not to establish our 
analysis, but to show the simplicity, as well as superiority, 
of our analysis. B.carter, through his semi-classical analysis 

[25], showed that a charged black hole with initial mass on 
the order of 1015 kg does negligibly discharge throughout its 
life. This, if translated for a KS black hole, implies that a 
KS black hole almost does not discharge if its initial charge 
is roughly one mole of electrons. In fact, charged black 
holes with sufficient initial mass, under certain idealized 
conditions, have been shown semi-classically [26] not to 
discharge. This again supports our conclusion regarding the 
stability of an electric charge for decaying KS black holes.

4 � Wuasi stable fluctuations and Hawking 
decay

We see from the above examples that bounded fluctuations 
exist for charged, rotating quasi-stable black holes in certain 
regions of their parameter space, like a stable AdSKNBH. 
However, they ultimately decay, with a query as to whether 
their quasi-stability can reduce their decay rate. That the 
calculation of the decay rate of any black hole still cannot be 
completed in any theory of quantum gravity is of note; Thus, 
we are really unable to calculate the lifetime of any black 
hole. Nevertheless, we, as you will see, can still obtain vari-
ous pieces of interesting information regarding black hole 
decay just from the thermodynamic analysis. In fact, we will 
successfully answer the question that has been posed.

The decay of any black hole can approximately be 
explained by the Stefan–Boltzmann law as its pro-
file for Hawking radiation approximately overlaps with 
that of a black body. Thus, its luminosity (L) varies with 
temperature(T) as L ∝ T4 . As the temperature(∝ MA ) is a 
function of its area, angular momentum and charge, the 
luminosity(L) is also a function of these parameters, i.e. 
L = L(A,Q, J) . Thus, the variation in luminosity can be 
expressed as

We can express the mass of a black hole(M) as 
M ≡ M(A,Q, J) . This implies that MAJ =

M2
AJ

2M
−

M2
A
M2

J

4M3
 . That 

M2
AJ

 is negative for both KS and KN black holes can be eas-
ily checked. That M2

A
 and M2

J
 are positive for both of them 

is also true. Hence, MAJ is negative for both of them, and a 
reduction in angular momentum ( ΔJ < 0 ), which likely to 
be the case during the process of Hawking decay, enhances 
the decay rate.

Similarly, we can argue that MAQ is negative for both KS 
and KN black holes. Because the ratio Q

2

A
 for a KS black hole 

is not restricted, its charge may remain fixed at its equilib-
rium value. Hence, charge does not play any role in enhanc-
ing the decay rate of this black hole. The situation is differ-
ent for a KN black hole. The ratio Q

2

A
 is bounded; hence, the 

(4)ΔL ∝
(
MAAΔA +MAJΔJ +MAQΔQ

)
.



365Hawking decay and thermodynamic transformation of a black hole: two examples﻿	

Vol.:(0123456789)1 3

charge has to be reduced during the decay process to satisfy 
the non-extremality bound. This will, in turn, enhance the 
decay rate.

Now, MAA is positive for a KS black hole in the region 
0.4

8𝜋
<

J

A
<

1

8𝜋
 . Thus, a decaying KS black hole reduces its 

decay rate as its area always decreases(ΔA < 0 ). Simi-
larly, MAA is positive for a KN black hole in the region 
A2

96𝜋2
<
(
4J2 + Q4

)
<

A2

16𝜋2
 . Thus, the decay rate decreases in 

this region, and we see that the presence of angular momen-
tum for both KS and KN black holes enhances their lifetime 
in comparison with Schwarzschild black holes, supporting 
the semiclassical prediction [23]. Apart from these regions, 
both KN and KS black holes show their affinity to support 
Hawking decay. Hence, these black holes will gradually 
lose their angular momentum and charge(only for KN black 
holes).

Thus, we see that quasi-stable black holes try to resist 
the decay process, unlike an unstable AFSBH. However, 
they,unlike a stable AdSKNBH, ultimately decay under 
Hawking radiation.

5 � Discussion

Charged, rotating, quasi stable black holes ultimately decay 
under Hawking radiation, like unstable black holes. However 
the angular momentum and the charge almost do not fluctu-
ate in certain regions of their parameter space. These black 
holes try to resist the decay processes, somewhat similar to 
a stable black hole. Hence, they possess this dual property. 
However, the most fascinating thing is that quasi stable black 
holes transform from one kind to another during Hawking 
decay. This interesting property is solely a feature of quasi 
stable black holes. Both KNBH and KSBH have similar 
kinds of fluctuations during their Hawking decay, but the 
origins of these black holes are entirely different. Thus, some 
sort of differences is expected to be somewhere for them. We 
have unrevealed this in this paper. The difference is in their 
thermodynamic transformation. A KN black hole is likely 
to lose both its charge and angular momentum whereas a KS 
black hole is likely to lose its angular momentum only. One 
more fantastic issue deserves notice. We still do not know 
how to calculate the decay rate and the life time of any black 
hole from the perspective of Quantum Gravity, but we still 
can predict the leading order behavior of black holes during 
their decay. We can at least confirm whether the decay rate 
will increase or decrease at any point of parameter space. 
This is the novelty of this paper.

Obviously the end states of black holes will be fixed with 
some minimum area [24]. A KN black hole will end up as 
a neutral, non-rotating black hole whereas a KS black hole 
will end up as a non rotating, charged black hole. In fact, 
these remnants are potential candidates for dark matter, as 

well. Thus, the results described here may have relevance for 
dark matter physics [24].

Fluctuations of angular momentum and charge for both 
KNBH and KSBH behave like that of a stable AdSKNBH 
in some regions of parameter spaces. Now, an AdSBH is 
dual due to AdS/CFT correspondence to a strongly coupled 
gauge theory at finite temperature [27, 30]. Hence, strongly 
correlated condensed matter physics may be analyzed using 
the AdS/CFT correspondence. Thus, the results obtained 
here may have some impacts on condensed matter physics.
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