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ABSTRACT
The present study attempts to model the spatiotemporal urban
growth of the Kolkata metropolitan area (KMA), India, in a com-
parative modeling framework using three (remote sensing and
geographic information system) RS-GIS integrated techniques,
namely stochastic-choice Markov-chain (STCHOICE), cellular autom-
ata-Markov (CA-MARKOV), and multi-layer perceptron neural net-
work (MLPNN) coupled with Markov-chain approaches intending
to monitor land-use efficiency defined by United Nations for sus-
tainable urban development in KMA. In order to find out the best
modeling approach, each of the three techniques is engaged in
modeling KMA’s growth, and the model thus obtained is
employed to predict future growth. The MLPNN (Kappa ¼ 0.9025)
appears to be a considerably better approach as compared to the
other two approaches: CA-MARKOV (Kappa ¼ 0.6941) and
STCHOICE (Kappa ¼ 0.5392). The MLPNN simulated urban growth
for 2036 reveals that the urban built-up cover is expected to be
about 55% from that of 31% in 2016 due to the significant con-
version of other land covers. The study reveals that urban and
peri-urban areas do not have a similar pattern of land consump-
tion and land-use efficiency in KMA. The central KMA reflects bet-
ter land-use efficiency due to the compact built-up growth
compared to the periphery reflecting leapfrog growth as a result
of rapid urban sprawling.

HIGHLIGHTS

� Predicted future urban growth in Kolkata Metropolitan Area
(KMA) using comparative modeling framework

� Monitored urban land use efficiency (SDG 11.3.1) for sustain-
able urban development in KMA

� The study reveals that urban and peri-urban land consumption
and land use efficiency are different
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� Identified most influential driving factors from the selected fac-
tors responsible for the spatial pattern of urban expansion
in KMA

1. Introduction

Presently, more than half of the global population lives in urban areas, and 6 out of 10
people would be city dwellers by 2030. World cities occupy only 3% of the planet’s sur-
face yet consume 75% of the world’s energy and emit 80% of global carbon dioxide emis-
sion (Estoque et al. 2021; Estoque and Murayama 2014). In the near future, about 95% of
urban expansion is expected to take place in developing countries (UN, 2015). Supply of
fresh water, sewage systems, air quality, and public health are all under stress as a result
of rapid urbanization. Unplanned urban sprawl can hurt national development and global
sustainability. The United Nations (UN) Agenda for Sustainable Development set a total
of 17 sustainable development goals (SDG), 169 targets, and 232 quantifiable indicators to
be achieved by 2030 (UN, 2015, 2017). UN SDG 11.3 focuses on sustainable cities and
aims at “making cities inclusive, safe, resilient and sustainable.” The SDG indicator 11.3.1,
“Ratio of land consumption rate to the population growth rate (LCRPGR),” used to iden-
tify land-use efficiency (LUE) defined as amount of land used for urban land uses, which
typically entails the conversion of non-urban to urban impervious surfaces (Li et al.
2021). To be more explicit, SDG indicator 11.3.1 measures the ratio between the rate at
which cities and urban areas grow and the rate at which their people expand in order to
assess how effectively cities and urban regions utilize land (UN-Habitat 2016, 2018a;
Estoque et al. 2021; Rienow et al. 2022).

Thus, SDG indicator 11.3.1 signifies the relationship population and urban form. The
size, area, and configuration of a city are considered to be its physical characteristics. A
city’s growth rate is compared to population growth to determine if it is growing faster,
slower, or at the same rate (Laituri et al. 2021). Excessive urban growth measured in
terms of urban built-up spread in relation to population increase leads to decline LUE
(UN-Habitat, 2016). As a result, in order to increase LUE, the LCRPGR should be smaller
than one with a declining trend over time (UN-Habitat 2018a; Melchiorri et al. 2019;
Wang et al. 2020). The imbalance population growth to city’s physical growth may create
the access to transportation networks, services, and environmental sustainability challeng-
ing. Measuring LCRPGR allows urban planners and decision-makers to estimate the
demand for ecosystem products and services, discover new areas for urban growth, and
support long-term sustainable development effectively (UN-Habitat 2018b; Estoque et al.
2021). SDGI 11.3.1 supports the assessment and tracking of population increase and city
expansion in areas where local data is required for planning and development activities,
the provision of basic services, and the implementation of sustainable policies (Laituri
et al. 2021). LUE trends can also be discerned by analyzing LCRPGR data over a period
of time (Schiavina et al. 2019; Wang et al. 2020). As a result, tracking the indicator is crit-
ical not just for understanding spatiotemporal patterns of urban growth and formulating
policies but also for encouraging sustainable urbanization (UN-Habitat 2018a; Rienow
et al. 2022).

Modeling spatiotemporal urban growth can help with tracking long-term LUE. The
activity of defining, building and applying models that represent functions and processes
related to the dynamics of land use/land cover, population, employment and
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transportation in urban areas is referred to as urban modeling usually embodied in com-
puter programs (Batty 2009; Bhatta 2013). Since the 1950s, urban planners, geographers
and ecologists have devised several urban models (Berling-Wolff and Wu 2004). Thus,
many analytical and static urban modeling approaches that are based on diverse theories
such as rank-size relationship, urban geometry, economic activities, city structures, etc.
are also available in the literature. However, such models primarily deal with historical
evolution, growth and expansion at the spatiotemporal dimension; these models cannot
be applied to predict future urban growth.

In contemporary urban research, models of urban growth are often deployed to under-
stand the nature of the spatiotemporal pattern of urban growth and to simulate future
urban scenario, and these are helpful for future resource allocation and urban planning.
Lambin (2004) summarized the land-use change model into four broad groups: (i) statis-
tical models, (ii) stochastic models, (iii) optimization models and (iv) process-based
dynamic simulation models. Pooyandeh et al. (2007) categorized urban growth models
into two broad parts—(a) complexity models and (b) temporal GIS models. Besides, the
complexity models are further subdivided into models based on cellular automata (CA),
agent-based models, neural network-based models and fractal-based models. Batty (2009)
recognized three broad categories of urban simulations: (a) land-use and transportation
models, (b) urban dynamics models, and (c) CA, agent-based model and micro-simula-
tion. In aggregate, commonly used models for simulating urban growth and land-use
dynamics are categorized into four subcategories, namely empirical statistical, optimiza-
tion, stochastic models and process-based dynamic simulation models (Lambin 2004;
Zhang 2009).

A dynamic modeling system is preferred to understand the spatiotemporal of urban
growth (Batty and Longley 1994). Considerable efforts have been made towards develop-
ing and improving dynamic urban modeling (Batty and Xie 1994; Landis 1995; Li and
Yeh 2000; Batty 2005; Sahana et al. 2019). Significant improvement in the spatiality of
urban growth came in 1980s only with the use of CA models. Since then, CA models
have been widely used for modeling urban growth in a complex urban system (Xie 2010;
Batty et al. 1999; Fang et al. 2005; Al-Ahmadi et al. 2009; Chowdhury and Maithani 2014;
Mondal et al. 2017). Wu and Webster (1998) applied multi-criteria evaluation (MCE)
transition rules to predict land-use conversion along the fringe areas of a rapidly growing
metropolis. The domain experts, specifically in the field of modeling urban growth, use
the CA model coupled with other techniques (Sahana, 2018) and machine learning
approaches (e.g., Shafizadeh-Moghadam et al. 2021)—known as hybrid models. For a
good discussion on integration of CA with machine learning approaches one may refer
Shafizadeh-Moghadam et al. (2021). The cellular automata Markov (CA-MARKOV) is a
widely employed such a hybrid model (Mondal et al. 2017; Olmedo and Mas 2018).

Over the years, researchers have developed and used different other sophisticated mod-
els to simulate and analyze urban growth, such as artificial neural network (ANN) (e.g.,
Almeida et al. 2008; Maithani 2009; Abiden et al. 2010; Shafizadeh-Moghadam et al.
2021), agent based model (e.g., Jjumba and Dragi�cevi�c 2012; Arsanjani et al. 2013), genetic
algorithm (GA) (Tang et al. 2007), geographically weighted regression (e.g., Mondal et al.
2015), SLEUTH model (e.g., Clarke et al. 1997; Herold et al. 2003; Jat et al. 2017), analyt-
ical hierarchy process (AHP) (e.g., Park et al. 2012; Devendran and Lakshmanan 2019),
bivariate or stepwise multiple regression (e.g., Sudhira et al. 2004; Al-Sharif and Pradhan
2014), logistic regression (e.g., Hu and Lo 2007; Nong and Du 2011; Munshi et al. 2014;
Dhali et al. 2019), Markov chain (MC) (e.g., Tang et al. 2007; Takada et al. 2010;
Arsanjani et al. 2013) and fuzzy logic (e.g., Liu 2012). The multi-layer perceptron (MLP)
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is a widely applied ANN approach in modeling and forecasting urban growth (Sharda
1994; Hu and Weng 2009; Mishra and Rai 2016; Sahana et al. 2018). In addition, the tran-
sition potential used in the MLP model is reported to be best performed as compared to
other modeling techniques (Eastman et al. 2005). Some studies have used the MC in com-
bination with ANN for modeling urban growth dynamics (e.g., Mondal et al. 2020). MC
is believed to be a useful tool for modeling land use/land cover (LULC) change when the
process of land cover change in an area is complex and challenging. The ANN modeling,
in combination with MC, is capable of effective simulation of urban dynamics as ANN
can fit complicated non-linear association between urban land use dynamics and factors
driving urban growth (Eastman and Toledano 2018).

Urban expansion can efficiently be detected, mapped, monitored and analyzed using
RS and GIS tools. Satellite imagery can present a synoptic view of a landscape at the fre-
quent interval, provide images of areas inaccessible to conventional surveying, and reveal
explicitly land use and land cover patterns, which is widely used as an input database to
extract urban built-up areas. The technology of RS coupled with GIS is a cost-effective,
technologically sound, useful and powerful tool, thus can be deployed to monitor and
model urban growth dynamics. Since its inception in 1972, the time series Landsat data
have been comprehensively used by researchers for change detection in spatiotemporal
urban growth. With the advancement in research, researchers have devised different such
models integrated with RS-GIS for quantifying and modeling the patterns and processes
of urban expansion in cities (Mithun 2020; Mithun et al. 2021).

Recently, a number of research works have been devoted to comparing the suitability
and performance of these models. Furthermore, various studies have also worked on spa-
tial land consumption and the nature of SDG 11.3.1 (Schiavina et al. 2019; Wang et al.
2020; Jalilov et al. 2021). However, such urban growth modeling is very rare for the
Indian cities, having a long history of urbanization. In the present day, Indian cities are
the fastest-growing cities of the world that’s why urban growth modeling is an almost
need for sustainable urban planning. The present study assessed the spatiotemporal urban
growth of Kolkata metropolitan area (KMA) during 1996–2016 and predicts the future
urban growth using a comparative modeling framework. Further predicted growth model
has been used to monitor urban land-use efficiency and sustainable urban development
(SDG 11.3.1) in Kolkata metropolitan area (KMA). For this work, we have used three RS-
GIS integrated techniques, namely Stochastic choice Markov chain (STCHOICE), CA-
MARKOV, and MLP neural network (MLPNN) coupled with the multi-criteria evaluation
(MCE) with the following objectives: (a) Identifying major driving factors or explanatory
variables from the selected variables responsible for urban growth in KMA; (b) assessing
the spatiotemporal urban growth of KMA during 1996–2016 using comparative modeling
framework (c) Predicting future urban growth in KMA for the next two decades, i.e., for
2036, using the best modeling approach after successful validation and (d) Further, moni-
toring the SDG indicator 11.3.1 for sustainable urban development in KMA using the pre-
dicted maps.

2. The study area

Kolkata, erstwhile Calcutta, is a district and the capital of West Bengal, an Indian state.
The city of Kolkata is about 300-year old and remained as India’s capital till 1911 under
British rule (Bhatta 2012). The present study considers the KMA (Figure 1) as the case
study, which is the urban agglomeration of Kolkata city spreading either side of the
Hooghly River along the north-south direction.

4 S. MITHUN ET AL.



The KMA is the largest metropolitan area in West Bengal and after Mumbai and
Delhi, the third most populous metropolitan area in India. It is the leading financial, com-
mercial, educational, health, and research nucleus that cater to the requirements not only
for the metropolitan but also for the entire state and Eastern India (KMDA 2011).
Despite accounting for only roughly 18% of the state’s population, the KMA’s contribu-
tion to the state’s economy is estimated around 30% of the gross domestic product.
Kolkata and parts of West Bengal’s other five districts, namely Haora, Hugli, North 24
Parganas, South 24 Parganas, and Nadia, make up the KMA (Mithun et al. 2016).
Besides, the KMA comprises three municipal corporations, namely Kolkata municipal cor-
poration (KMC) erstwhile Calcutta municipal corporation (CMC), Howrah municipal cor-
poration, and Chandernagore municipal corporation, 39 municipalities, one cantonment,
and parts of 24 community development (CD) blocks that contain panchayat (areas under
a village council) areas. In aggregate, KMA comprises 72 cities, 572 towns, including
Census towns1 and villages (KMDA 2011; Mithun et al. 2016).

Under the British rule, the city of then Kolkata witnessed the active engagement of
Calcutta Improvement Trust established in 1911 to assure the spatial planning in the
form of construction new wide roads, channels for drainage, refurbishing an existing
building and planning for the new neighborhoods (Ganesan, 2016; Rahaman et al. 2019).
After independence, different organizations like Calcutta Metropolitan Planning
Organization, KMC (formerly CMC), Kolkata Metropolitan Development Authority
(KMDA) actively participated in the formulation and implementation of different spatial

Figure 1. Location map of the Kolkata Metropolitan Area (KMA).
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plans and policies in Kolkata. As a part of the spatial planning of Kolkata, Bidhannagar
city was developed as a satellite town of Kolkata to accommodate the mushrooming
population of the mother city between 1958 and 1965. After that in 1999 Newtown
Kolkata city has been designed as a self-sustaining city to provide habitation to the high-
income to low-income group of the city. For the proper development of Bidhannagar,
New Town Kolkata Development Authority was formed in 2007. Presently along with
KMDA and NKDA other government and quasi-government organizations like Housing
& Urban Development Corporation Ltd., West Bengal and Housing Infrastructure
Development Corporation Limited are actively participating in providing spatial infra-
structure to assure the sustainable urban development of the KMA (KMDA 2011;
Ganesan 2016; Mithun 2020).

3. Database and methodology

The present study used multispectral and temporal Landsat satellite imageries for 1996,
2006 and 2016 for the study area, that is, KMA obtained from the United States geo-
logical survey (USGS) Earth Explorer. The acquired images were geometrically corrected
and almost free of cloud. Thermal bands of Landsat sensors were kept out of analysis
owing to their coarser spatial resolutions compared to the optical bands. An administra-
tive map of KMA was collected from the KMDA bearing administrative boundary at dis-
trict, corporation, municipality, and community development (CD) block-level
administrative boundary within the KMA. For modeling urban growth, a set of socio-eco-
nomic and biophysical data such as river, metro network, railways, roads, river, presence
of protected parks, etc., was collected from various sources (Table 1). The survey of India
(SOI) topographical maps of old and open (new) series, Google earth map, reference map
acquired from the national atlas and thematic mapping organization, India, and ground

Table 1. Details of the acquired database excluding satellite images.

Data type Dataset (characteristic) Year Sources

SRTM Digital Elevation
Model (DEM) 1
Arc-Second

Elevation (m), slope (�) 2014 USGS Earth Explorer

Landsat TM Path & Row 138 & 44, 138
& 45 UTM (Zone 45N) &
WGS 84

16.02.1996 and 12.12.2006 USGS Earth Explorer

Landsat OLI Path & Row 138 & 44, 138
& 45 UTM (Zone 45N) &
WGS 84

07.12.2016 USGS Earth Explorer

Socio-economic data Population density 1991, 1996, 2001 and 2011 Census of India
Commercial centers, major

higher education
institutes, urban
centers, other
urban amenities

1996–2011 Bureau of Applied
Economics & Statistics,
Govt. of West Bengal,
SOI topographical
maps, Google Earth
satellite map

Housing price 1996–2016 Directorate of Registration
and Stamp Revenue,
West Bengal, and
Field survey

Transport network, metro
stations, railways,
protected areas

1996–2011 SOI toposheet, Google
satellite map, Open
Street Map (OSM),
and KMDA

Environmental data Air quality index (AQI) 1996 and 2006 West Bengal pollution
control board (WBPCB)
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control points collected by global positioning system survey were used for assessing the
accuracy of the classified images. The corporation, municipality, and CD Block level
population data were obtained from the Census of India’s official website. The air quality-
related data, that is, air quality index (AQI), was acquired from the official web portal of
the West Bengal pollution control board (WBPCB). Besides, the literature survey and an
experts’ opinion survey consisting of planners, academicians, administrators, and local
people were conducted to select and weigh factors for urban growth in KMA.

The study adopted the state-of-the-art SVM classifier for classifying the preprocessed
(geometrically and radiometrically corrected) Landsat TM and Landsat OLI images (Table
1) in order to prepare the LULC maps for 1996, 2006 and 2016 (Mithun 2020; Mithun
et al. 2021). In the present study, the LULC classification scheme was developed in tune
to reflect the major land-use types of KMA. Some similar studies (e.g., Araya and Cabral
2010; Ahmed and Ahmed 2012; Shafizadeh-Moghadam and Helbich 2013) and an experts’
opinion survey with planners and academicians were taken into account for the classifica-
tion scheme. The approach of Anderson (1976) was also followed to define the under-
taken LULC classes. The definition of present LULC classes is available in Mithun
et al. (2021).

The whole classification process was executed in ArcGIS 10.6 (ESRI, 2017). Using all
optical bands from Landsat TM and OLI data, the multiband raster data were prepared
for all the respective years (1996, 2006 and 2016). The Training Sample Manager in
ArcGIS was used to collect representative training samples for all the land cover classes
from the multispectral raster data for each year. With 300 representative training samples
per class, a sum of 1800 samples (for six land cover classes) was collected from the multi-
spectral raster data for each year. The prepared original multiband images were used as
an input dataset to train SVM classifier for each year separately. Also, the multispectral
base images were used as ancillary data to generate attributes and other required informa-
tion for classification. Then, the output classifier definition files were used in the Image
Classifier tool in ArcGIS to produce LULC map for each year separately (Mithun 2020).
The final LULC images of KMA for the years 1996, 2006 and 2016 were produced with
six LULC classes, namely built-up, mixed built-up, water bodies, vegetation, agricultural
land, and barren land. The LULC maps were used as input databases in modeling
urban growth.

The methodology adopted for modeling urban growth in the present study applying
the three modeling approaches, namely STCHOICE, CA-MARKOV, and MLPNN, is rep-
resented in Figure 2. The first box in Figure 2 presents collection, preprocessing, classifi-
cation and accuracy assessment of SRS data to produce LULC maps of KMA for 1996,
2006 and 2016. Subsequently, the second, third and fourth boxes in Figure 2 depict stages
of simulation of urban growth for the year 2016 in KMA applying STCHOICE, CA-
MARKOV and MLPNN modeling approaches, respectively. The fourth box also presents
the prediction of future urban growth in KMA for the year 2036 using the
MLPNN approaches.

3.1. Stochastic-Markov chain (STCHOICE) model

The STCHOICE integrates stochastic processes with MC analysis. When the past trend of
LULC dynamics is understood, it can be very useful. According to the Markovian process,
the future urban expansion in a given area at time t2 may be simulated from the immedi-
ate proceeding state, that is, at time t1: The STCHOICE generates a future LULC map by
evaluating and combining conditional probabilities that each LULC class exists at each
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pixel position against a rectilinear random probability (Ahmed and Ahmed 2012;
Eastman 2015). The TerrSet (Eastman 2015) was employed for STCHOICE modeling in
the present study, where the present LULC of KMA (2016) was simulated based on the
LULCs of 1996 and 2006.

In MC analysis, the transition probability matrix expresses the probabilities related to
the conversion from one state to another. Consider an MC process having n states
S1, S2 . . . :, Sn and Pij denotes the probability corresponding to changing from state Si to
Sj as presented in Equation (1).

Figure 2. Methodological flowchart showing the implementation of modeling urban growth in a compara-
tive framework.

8 S. MITHUN ET AL.



P ntþ1 ¼ Sjj nt ¼ Si
� �

(1)

Then the transition matrix is defined as in Equation (2),

P ¼
p11 . . . p1n
. . . . . . . . .
pn1 . . . pnn

������

������
, pij � 0,

Xn
j¼1

pij ¼ 1, i ¼ 1, . . . , n (2)

The forecasting of future LULC can be calculated following Equation (3) (Al-Sharif
and Pradhan 2014),

S t þ 1ð Þ ¼ Pij:SðtÞ (3)

where Pij¼ transition probability matrix, SðtÞ represents the state of land cover at time t,
and Sðt þ 1Þ is the state of land cover at a time ðt þ 1Þ:

3.2. Cellular automata (CA) model

A CA can be characterized as a dynamic spatial system, according to Barredo et al.
(2003), in which the state of any cell in an array is determined by the previous state of
the cell and its surroundings based on specific criteria.

Let, Stxij is the status of a cell xij at position i, j at time t: Stxij belongs to a set of
states in a lattice. Then, the cell’s status at time t þ 1 can be expressed as Stþ1

xij , as in
Equation (4) (Liu, 2008),

Stþ1
xij ¼ f Stxij , StXxij

� �
(4)

where Xxij stands for a group of cells in the surrounding of the cell xij, and StXij
represents

the states of the neighbor cells Xxij , and f denotes a function that represents a set of tran-
sition rules.

Moreover, if the cell is regarded as a member of its immediate neighborhood,
Equation (4) can be modified as Equation (5),

Stþ1
xij ¼ f StXxij

� �
(5)

3.2.1. Cellular automata Markov (CA-MARKOV) model
In the present study, the CA-Markov module in TerrSet (Eastman 2015; Olmedo and Mas
2018) that integrates CA with MC was employed to model urban growth in KMA. The
necessary inputs comprised a base land cover map, transition probability, and area matrix,
suitability maps, and a user-defined contiguity filter. Using the model, the state of each
LULC category at time t2, that is, 2016 was determined based on the change in LULC
class between time t1 (1996) and t0 (2006). Based on its neighbors, the CA-MARKOV
used a spatially explicit contiguity filter to alter the state of cells, in predicting the future
LULC in KMA for 2036. For this study, 5 � 5 contiguity filter was used, represented in
Table 2.

Table 2. A 5 � 5 contiguity filter used in CA-MARKOV modeling.

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
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3.2.2. The multi-criteria evaluation (MCE)
The present study performed an MCE for combining the selected factors (Table 5) that
drive urban growth and constraints or resisting forces resisting urban growth in KMA.
The previous studies (Park et al. 2011; Eastman 2015; Aburas et al. 2017) and an experts’
opinion survey were taken into consideration for identifying the driving forces and
constraints.

In the MCE module, the continuous factors were standardized into the desired range
using fuzzy standardization applying sigmoidal, linear and J-shaped membership func-
tions. It further allowed to use specific membership function shapes, such as monotonic-
ally increasing, monotonically decreasing, or symmetric, depending upon the nature of
the factor under consideration (Eastman 2015).

Once the standardized images were created, the WEIGHT module in TerrSet (Eastman
2015) was used to derive relative weights of factors under consideration applying a pair-
wise comparison process under the AHP framework (Saaty 1977). Here, a 9-point recipro-
cal continuous scale was used to ascertain the relative importance of each factor in
relation to all others. (Eastman et al. 1995, 1998). Assigning of relative weights to different
factors was determined considering the literature review and the experts’ opinion survey.

The consistency ratio (CR) was calculated in order to assess the degree of consistency
in the weights so obtained (Eastman 2015), as in Equation (6),

CR ¼ CI
RI

(6)

where RI¼ Random Index, and CI ¼ the degree of consistency in weight assignment,
which can be calculated using the formula in Equation (7),

CI ¼ p�n
max

n
(7)

where pmax denotes the size of the principal eigenvalue in the decision matrix, and the
number n denotes the size of the decision matrix. A CR of 0 denotes a perfect pairwise
comparison, while a CR value higher than 0.10 indicates the presence of inconsistencies
in the matrix.

Following the development of the criteria maps (factors and constraints), the MCE
module in TerrSet was used to combine factors and constraints using weighted linear
combination (WLC) to create a suitability surface. Eastman (1999, 2015) considered previ-
ous researches by Malczewski et al. (2003) and Behera et al. (2012).

Equation 8 illustrates the preparation of suitability map deploying WLC combination
procedure (Eastman et al. 1998),

S ¼
X

wixi (8)

where S ¼ suitability, wi ¼ weight of factor i and xi ¼ criteria score of factor i. If
Boolean constraints are incorporated, then the procedure can be modified, as in Equation
(9) (Eastman et al. 1995, 1998; Eastman 2015),

S ¼
X

wixi �
Y

cj (9)

where cj¼ criteria score (0/1) of constraint j and
Q¼ product.
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3.3. Multi-layer perceptron neural network (MLPNN) Markov model

An MLPNN (Figure 3) is a kind of feed-forward neural network in which one or more
layers exist between input and output layers (Atkinson and Tatnall 1997; Ahmed and
Ahmed 2012; Taud and Mas 2018).

MLPNN learning algorithm is a backward propagation (BP) algorithm that uses data
from training sites (Ahmed and Ahmed 2012; Eastman 2015). The input that is received
by a single node weighted as in Equation (10),

netj ¼
X

xijOi (10)

where xij represents weight difference between nodes i and j, and the output from node i
is denoted by Oi:

The result (output) from a nod j is calculated, as in Equation (11),

Oj ¼ f netjð Þ (11)

where f represents a non-linear sigmoid function used to derive the weighted sum before
the information goes to the next layer.

The relation presented in Equation (11) is called forward propagation (FP). The output
nodes’ activities are compared to the expected activities for those nodes (Atkinson and
Tatnall 1997; Eastman 2015). Thus, the error is transmitted backwards via the network,
and network weights are adjusted, as in Equation (12),

Dxijðnþ 1Þ ¼ gðdjOiÞ þ aDxijðnÞ (12)

where Ƞ denotes a parameter of learning rate; dj represents a measure of rate of change
in error and a is the parameter of momentum.

The process of FP and BP is iterated until the errors of the network minimize to an
acceptable level. The network is trained to provide appropriate weights for the network
between the input and hidden layers, as well as the network between the hidden and out-
put layers, in order to classify unknown pixels (Ahmed and Ahmed 2012; Eastman 2015).
The numbers of hidden layer nodes are estimated using Equation (13),

Nh ¼ INT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � No

p� �
(13)

where Nh denotes hidden nodes; Ni represents input nodes; and No indicates the out-
put nodes.

Training accuracy is also affected by the quantity of training samples used. A too small
sample size may not accurately represent the pattern of LULC class, while a too high may
result in overlapping (Ahmed and Ahmed 2012). The root mean square error (RMSE) is
used to determine an acceptable error rate, as presented in Equation (14),

Figure 3. An MLPNN Model (Source: Ahmed 2011).
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RMSE ¼
P

ðeiÞ2
.

N
¼

P
ðti�aiÞ2

.
N

(14)

where N denotes elements; i is element’s index; ei denotes error of the ith element; ti is
the target value and ai is calculated value. The MLPNN modeling was implemented
employing the ‘Land Change Modeler’ module in TerrSet (Eastman 2015).

4. Results

All three classified images of 1996, 2006 and 2016 depict six LULC classes, namely built-
up, mixed built-up, water bodies, vegetation, agricultural land and barren land, as in Fig.
4. Overall classification accuracies were reported to be 89.75% in 1996, 92.00% in 2006,
and 92.75% in 2016. The corresponding Kappa index of agreement was found at 0.879,
0.904 and 0.912, for 1996, 2006 and 2016, respectively. Thus, the levels of achieved accu-
racies obtained in the current study were satisfactory and acceptable (Mithun et al. 2021).

4.1. Results of STCHOICE modeling

Results of STCHOICE modeling are presented with the following heads.

4.1.1. Transition magnitude and probability into built-up and mixed built-up covers
The distribution of non-urban land covers that were subjected to transition into built-up
and mixed built-up classes in the KMA during the period, that is, 1996� 2016, is repre-
sented in Figure 5. During the period, a total of 49,111 ha non-built-up land areas were
converted into built-up class. The land cover of vegetation dominates the process of con-
version into built-up areas constituting around 36.74% out of total such transformation.
This conversion is followed by water body (17.69%), bare land (17.63%), and agricultural
land (15.19%) in order of magnitude. This illustrates that vegetal cover is the most vulner-
able land cover to be transitioned into built-up cover in KMA. Besides, Figure 5(a) also

Figure 4. Classified LULC maps of KMA in 1996 (a), 2006 (b) and 2016 (c) (Mithun et al. 2021).
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highlights that the mixed built-up class tops (30.87%) the process of transition into urban
built-up areas followed by vegetation (21.35%), water bodies (20.74%), and bare land
(17.31%), while agricultural land (9.74%) stands as least important to be converted into
built-up covers as in Figure 5(a). This explains that the mixed built-up class is subject to
switch into built-up areas with time in the metropolitan along the boundary of the built-
up regions. On the other hand, as depicted by Figure 5(b), the transition into mixed
built-up is dominated by the vegetal cover (53.67%) lying at the periphery of urban built-
up cover followed by bare land (17.97%), and agricultural land (12.79%).

As discussed earlier, the STCHOICE combines both stochastic processes and MC ana-
lysis. Applying MC analysis, the LULC of KMA was modeled for 2016 based on the land
cover transition during the previous ten years, that is, 1996 to 2006. The MC analysis pro-
duced a transition area matrix, a transition probability matrix, and a set of conditional
probability images for the change in 2016 by analyzing two qualitative land cover images
for two different years, that is, 1996 and 2006 (Table 3).

The transition probability matrix, as in Table 3, depicts the probability that each land
cover would change to other land covers in 2016. The diagonal elements of the matrix
hold higher probabilities as they indicate an intra-type land cover transition, that is, self-
replacement referring to land cover types that remain similar, while off-diagonal elements
show probabilities of inter-type land cover transitions. The corresponding number of

Figure 5. Spatial view of non-built-up covers that were transitioned into built-up and mixed built-up covers in KMA
during 1996–2016; (a) transition of non-built-up covers into the built-up cover; and (b) transition of non-built-up cov-
ers into mixed built-up covers.
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pixels that would be transitioned from each land cover to other different land covers is
presented in Figure 6. Both the tables highlight that all the non-built-up land cover shows
a high degree of transition to be transformed into built-up and mixed built-up classes.

4.1.2. Conditional probability images
The MC analysis produced a set of conditional probabilities images based on the condi-
tional probability matrix (Figure 6). They are called so as the probabilities are conditional
to the current state. The images are projected for the future ten years to 2016 from the
two previous land cover images of 1996 and 2006, depending upon the past trend of land
cover transformation during the last ten years, that is, during 1996–2006. The images
show the level of probability of being a particular land cover in 2016. The Markovian
probability image of being built-up areas, as in Figure 6(d), ranges up to 0.84 as highest
among the land covers with higher values towards central parts of the metropolitan,
whereas the probability being the mixed built-up areas ranges up to 0.36 with higher val-
ues along with the areas lying outside of mixed built-up cover as in Figure 6(c).
Therefore, a large-scale further built-up expansion would occur in 2016 in the metropol-
itan with being built-up at the central part and mixed built-up at the peripheral part at
the cost of other non-built-up covers.

4.1.3. Simulating urban growth for 2016
Based on the Markovian conditional probability images, the land cover map of KMA was
predicted for 2016, deploying a stochastic choice decision model through evaluating and
aggregating conditional probabilities. This model was implemented in TerrSet (Eastman
2015), a widely used RS and GIS-based platform. This simulation is based on the past ten
years of land cover transition, that is, 1996–2006, performed by MC analysis. The pre-
dicted original image is represented in Figure 7(a), which looks quite pock-marked.
Besides, a 3� 3 mode filter was applied to the original simulated image that resulted in
the generation of a much clear predicted image, as presented in Figure 7(b).

4.2. Results of the CA-MARKOV modeling

As discussed before, the CA-MARKOV modeling was implemented employing CA-
Markov module in TerrSet (Eastman 2015) combining MC, CA and MCE. The results on
the CA-MARKOV Modeling are as follows.

4.2.1. MC based transition of areas
The MC analysis-based category-wise statement of areas under each land cover that went
into transition during 1996–2006 is presented in Table 4, which was required for the
implementation of CA-MARKOV modeling. Table 4 also highlights that all the non-built-

Table 3. Markovian transition probability matrix presenting the probability of each land cover to change into other
land covers during 2006–2016 based on the trend during 1996–2006.

LULCs Water bodies Vegetation Mixed built-up Built-up Agricultural land Bare land

Water bodies 0.3725 0.1290 0.1076 0.1254 0.1326 0.1329
Vegetation 0.1083 0.4995 0.1664 0.0261 0.0875 0.1122
Mixed built-up 0.0000 0.0000 0.3553 0.6447 0.0000 0.0000
Built-up 0.0015 0.0000 0.1615 0.8368 0.0002 0.0001
Agricultural land 0.1422 0.0930 0.0240 0.0256 0.4401 0.2751
Bare land 0.1137 0.1433 0.0472 0.0588 0.3807 0.2562
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up land covers show higher magnitude (in terms of number of pixels) of transition into
built-up and mixed built-up areas in KMA.

4.2.2. Standardization of factors and constraints
In the present study, the built-up suitability map was prepared involving an MCE. The
MCE combined the selected factors or explanatory variables that drive urban growth and
constraints or resisting forces that resist urban growth in KMA. Table 5 represents major
groups of factors, namely physical, socio-economic, linear infrastructures, and environ-
mental factors identified in this study. All the considered factors were standardized by
fuzzy standardization on a byte scale 0–255 with 0, indicating least while 255 indicating
most suitable for the objective under consideration (Figure 8). A pixel within a built-up
land cover has the highest suitability, which decreases with distance, and a pixel near to
built-up areas has maximum like to be converted into built-up cover.

Table 5 also reflects the types and shapes of fuzzy membership function, and the pos-
ition of inflection points used for factor standardization. Three types of fuzzy member-
ship, viz., monotonically decreasing sigmoid, J-shaped, and linear functions were used in
the present research in agreement with the research of Araya and Cabral (2010) and

Figure 6. Markovian conditional probability images for being the land covers in 2016 based upon the past trend of
land cover transition during 1996–2006; (a) being water bodies, (b) being vegetation, (c) being mixed built-up, (d)
being built-up, (e) being agricultural land, and (f) being bare land.
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Mondal et al. (2017) with adjustable settings (Table 5) for standardization of the factors.
However, for the majority of the factors used J-shaped standardization type explaining
that the factors were produced based on Euclidean distance. The position of inflection
points explains the nature of the function changing with distance. In case of J-shape func-
tion for the distance from the major roads explains that the areas within 200m of the pri-
mary roads are highly suitable for built-up development (Table 5). The suitability
decreases rapidly with distance up to 1000m; however, it never reaches zero. On the other
hand, the linear membership function seems to be suitable for factors like distance from
existing developed areas. Because of the agglomeration effect, areas nearer to built-up
areas transform into built-up areas faster than remote areas. It explains that suitability
regularly decreases with an increase in distance.

Thus, the factors expressed a varying degree of relative suitability for the decision
under consideration (Figure 8), while constraints are always Boolean. In this study, such

Figure 7. The STCHOICE simulated land cover map of KMA for 2016 based on Markovian conditional probability
images of 1996–2006; (a) original predicted image of 2016; and (b) 3� 3 mode filter generated predicted image
of 2016.

Table 4. Matrix of pixel numbers transitioned to different land covers during 1996–2006.

LULCs Water bodies Vegetation Mixed built-up Built-up Agricultural land Bare land

Water bodies 100218 34702 28954 33746 35688 35757
Vegetation 44393 204668 68161 10694 35860 45966
Mixed built-up 0 0 64679 117344 0 0
Built-up 601 0 66272 343475 81 49
Agricultural land 53317 34890 9012 9589 165064 103192
Bare land 30581 38554 12708 15820 102429 68933
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Figure 8. Fuzzy standardized byte scale (0–255) factors used in MCE in order to prepare suitability surface for built-
up development. The fuzzy factors include (a) housing cost, (b) air quality index, (c) distance from major bus stands,
(d) distance from commercial centers, (e) distance from industries, (f) major road distance, (g) distance from metro,
(h) nearest city distance, (i) population density, (j) railway distance, (k) slope, (l) elevation (DEM based), (m) minor
road distance, and (n) distance from built-up or developed areas and (o) land use likelihood.

Table 5. The undertaken factors and fuzzy standardization parameters for CA-MARKOV modeling.

Factors Membership function types Membership function shape Control points

Distance from built-up areas Linear Monotonically decreasing 200–2000 m
Distance from major roads J-shaped Monotonically decreasing 200–1000 m
Minor road distance J-shaped Monotonically decreasing 50–200 m
Nearest town/city distance Linear Monotonically decreasing 500–5500 m
Distance from railways J-shaped Monotonically decreasing 200–1000 m
Distance from metro J-shaped Monotonically decreasing 200–2000 m
Distance from major bus stands J-shaped Monotonically decreasing 100–500 m
Distance from commercial centers Linear Monotonically decreasing 0-6000 m
Distance from industries J-shaped Symmetric 0–100–500–5000 m
Slope Sigmoidal Monotonically decreasing 0�–10�
Elevation Sigmoidal Monotonically decreasing 4–20 m
Population density Linear Monotonically decreasing 920–10000 p/sq.km
Housing cost Linear Monotonically decreasing Rs. 1500–6000
Air quality index (AQI) Linear Monotonically decreasing 87–120
Land use likelihood Linear Monotonically decreasing –
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Boolean constraints maps of rivers, wetlands and parks were used in MCE while generat-
ing suitable surfaces for built-up development.

4.2.3. Factor weights
The relative weights of factors under consideration developed based on the pairwise com-
parison matrix under an AHP framework are represented in Table 6. Using a 9-point
reciprocal continuous scale, each factor was scored for its relevance relative to every other
factor in relation to the suitability of pixels for the activity being examined (Eastman
et al. 1995; Eastman 2015). The relative importance of each factor was determined consid-
ering the literature and the experts’ opinion survey (e.g., Araya and Cabral 2010).

The details of the weights of the factors determined in such a way are presented in
Table 7. The obtained CR value in the present study was less than 0.1 which confirms the
consistency of the defined weight schema, signifying that the factors with higher weights
are statistically more significant for the objective under consideration.

4.2.4. Built-up suitability surface and simulation of urban growth for 2016
The suitability map, thus, prepared through MCE in the present study, is presented in
Figure 9. The present study adopted the WLC procedure for aggregating all standardized
factors and constraints utilizing a weighted average. This suitability map displays the
degree of relative suitability for built-up development in the spatial dimension in KMA. A
higher pixel value in the suitability map represents a higher degree of suitability for built-
up development (Figure 9). The ‘CA_Markov’ module in TerrSet (Eastman 2015) was
employed using the Markovian transition area matrix and built-up suitability image to
simulate a LULC map of KMA for the year 2016 (Figure 10). In addition, a 3� 3 contigu-
ity filter was applied, and as discussed earlier, the land cover image of 2006 of KMA was
taken as the base land cover in the CA-MARKOV simulation.

Table 6. The pairwise comparison matrix (Saaty 1977) for the derivation of factor weights based on a 9-point rating
scale where each factor is compared with every other factor for its relative importance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Factors�

1 F
A
C
T
O
R
S�

1
2 1/5 1
3 3 5 1
4 3 5 1 1
5 1/3 3 1/3 1/3 1
6 5 7 5 7 5 1
7 3 7 3 3 3 1/3 1
8 1/5 3 1/5 1/3 1/5 1/7 1/7 1
9 3 9 1 1 3 1 1 5 1
10 5 7 3 3 3 1/3 3 3 3 1
11 5 7 1 1 1 1/3 1/5 5 1 1/3 1
12 1/3 1/3 1/5 1/5 1/5 1/7 1/7 1/3 1/5 1/5 1/3 1
13 1/5 1/3 1/7 1/5 1/5 1/9 1/9 1/3 1/9 1/7 1/7 1/7 1
14 1/3 1/3 1/5 1/5 1/5 1/7 1/5 1/3 1/5 1/5 1/5 1/3 3 1
15 5 7 5 5 7 5 5 7 7 7 7 9 9 7 1
�1¼Housing cost, 2¼ air quality index, 3¼ distance major bus stands, 4¼ distance from commercial centers,
5¼ distance from industries, 6¼ distance from metro, 7¼ nearest city distance, 8¼ population density, 9¼major
road distance, 10¼ land use likelihood, 11¼ railway distance, 12¼ slope, 13¼ elevation, 14¼minor road distance,
and 15¼ distance from built-up or developed areas.
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4.3. Results of the MLPNN Markov modeling

The MLPNN model integrated with MC was implemented employing the ‘Land Change
Modeler’ module in TerrSet (Eastman 2015). The results of the MLPNN modeling the
presented with the following heads,

Table 7. Factor weights derived based on pairwise comparison procedure under the AHP framework.

Factors Derived weights

Housing cost 0.0359
Air quality index 0.0161
Distance major bus stands 0.0545
Distance from commercial centers 0.0532
Distance from industries 0.0368
Metro distance 0.1487
Nearest town or city distance 0.0942
Population density 0.0213
Major road distance 0.0713
Land use likelihood 0.1063
Railway distance 0.0565
Slope 0.0164
Elevation 0.0085
Minor road distance 0.0127
Distance from built-up or developed area 0.2676

Figure 9. Suitability surface for built-up development in KMA for the year 2016.
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4.3.1. Transition sub-models
The non-built-up land covers are subjected to be transformed into mixed built-up and
built-up with time in the metropolitan of KMA, as observed in the present research.
Hence, the non-built-up land covers are primary contributors to increase built-up areas
in KMA. Besides, the mixed built-up land cover is also subject to conversion into pure
urban built-up areas with time. Therefore, the transitions by which non-built-up areas
are being converted into mixed-built-up and built-up areas in the metropolitan were
considered in the MLPNN modeling. Thus, a sum of nine transition sub-models was
identified and considered to simulate the urban growth of KMA. The sub-models so
selected include the transitions (1) from water bodies to mixed built-up, (2) from vege-
tation to mixed built-up, (3) from agricultural land to mixed built-up, (4) from barren
land to mixed built-up, (5) from water bodies to built-up, (6) from vegetation to built-
up, (7) from mixed built-up to built-up, (8) from agricultural land to built-up and (9)
from barren land to built-up land cover. The first four transition sub-models explain
the changing to mixed built-up covers, while the last five sub-models explain changing
to built-up land covers within the metropolitan with respect to time (Figure 11). The
undertaken sub-models considered land cover transitions during the period 1996–2006
as a training period.

4.3.2. Explanatory variables for the sub-model structures
The explanatory variables for modeling the transition sub-models under consideration
were taken into account after a rigorous literature review and based on the experts’ opin-
ion survey and literature review. The explanatory variables are given in Table 8, whereas
the variables normalized in a byte 0–255 scale are presented in Figure 12. The variables
added to the model were characterized as dynamic or static (Eastman 2015) based on
their roles in the urban growth of KMA they play. As such, all proximity variables such

Figure 10. The CA-MARKOV simulated land cover map of KMA for 2016.
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as distance to nearby town or city, metro distance, road distance, etc. were characterized
as dynamic variables, while the variables such as slope, elevation, etc. were characterized
as static variables. The quantitative measure of the variables was carefully tested, applying
the Cramer’s V values (Eastman 2015; Mondal et al. 2019) for all transition sub-models
under consideration. As the sample sizes in the sub-models were large, all the correspond-
ing p-values for the Cramer’s V values were found to be close to 0, expressing that all pix-
els of the variables were sampled independently and were free of spatial dependence in
their values.

Figure 11. The transitions of other non-built-up LULCs into built-up and mixed built-up covers during 1996–2006; (a)
transition of non-built-up covers into the built-up cover; and (b) transition of non-built-up covers into mixed built-
up covers.
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4.3.3. Simulation performance of the MLPNN transition sub-models
The inclusion of all explanatory variables with satisfactory Cramer’s V values was fol-
lowed by simulation of the transition sub-models. For training and validation, simula-
tion of the MLPNN sub-models required the sample pixels that were transitioned
between the previous two land covers of 1996 and 2006. In the present study, during
1996–2006, the minimum number of pixels that transitioned from non-built-up to
mixed built-up and from non-built-up or mixed built-up to built-up was found to be
higher than 10,000 in eight cases out of the total nine sub-models (Table 9). Therefore,
the maximum sample size was set at 10,000 in which 5000 pixels were used for training,
and the remaining 5000 sample pixels were used for validation purposes. Besides, 10,000
iterations were fixed as simulation-stopping criteria along with RMS at 0.01 and accur-
acy at 100%.

In this research, the two parameters were set in automatic mode. With its default
parameters, the MLPNN could adjust its learning rate automatically. The training and
testing RMS graphs were achieved as smooth descents and almost overlapped to each
other at the end of the simulation in all of the cases. The MLPNN provided accuracy and
skill measures at the end of the simulation. In all nine transition sub-models, the achieved
calibration accuracy level was found to be more than 90%, which is regarded as acceptable
for further use. The skill measure (Eastman 2015) is simply a difference between observed
accuracy and accuracy expected by chance varying from �1 to þ1. In this research, the
achieved skill measure was found to be close to þ1 in all cases (Table 9). After achieving
satisfactory statistics during both of the simulations, transition potential maps were cre-
ated for all the nine transitions. Figure 13 depicts transition potential maps (1996–2006)
showing changes from non-built-up to mixed built-up cover, while Figure 14 presents
transition potential maps (1996–2006) reflecting transitions from non-built-up and mixed
built-up to built-up cover. These maps show fuzzy set sigmoid function applied values
ranging from 0 to 1, in which higher the value represents a greater degree of membership
for that corresponding LULC type.

4.3.4. Simulating urban growth for 2016
Successful simulation of the nine transition sub-models was followed by the simulation of
present urban growth in the metropolitan. For the purpose, an MC analysis was again

Table 8. Nature and types of explanatory variables used in modeling of the undertaken transition sub-models.

Variables Type Unit

Built-up and mixed built-up distance Land cover distance Euclidean distance
Built-up and mixed built-

up likelihood
Land cover likelihood Relative frequency of pixels

Primary, secondary, and tertiary
road distances; distance from
metro, railways, railway stations,
and major bus stations.

Transport network distance Euclidean distance

Population density Socio-economic data Persons per sq. km
Commercial distance, distance from

major higher education institute,
a nearby town or city distance,
distance from other
urban amenities

Socio-economic and attribute distance Euclidean distance

Air quality index (AQI) Environmental features –
Housing price Socio-economic attribute Rs./sq.ft
Slope Topographic (physical) variables Degree (�)
Elevation from mean sea level Topographic (physical) variables Meters (m)
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integrated with the MLPNN modeling to simulate urban growth in KMA for the year
2016. Accordingly, as per the change in demand, future predictions could be imple-
mented, in which the future would be multiples of the training period. Figure 15 presents
the MLPNN and MC simulated land cover map of KMA for 2016.

Figure 12. The explanatory variables used in MLPNN modeling normalized in a byte 0–255 scale; (a) air quality index,
(b) distance urban built-up, (c) urban mixed built-up distance, (d) distance from major bus stops, (e) commercial dis-
tance, (f) distance from major higher educations, (g) industrial distance, (h) nearby town or city distance, (i) other
urban amenities distance, (j) population density, (k) primary road distance, (l) railway station distance, (m) distance
from rail lines, (n) secondary road distance, (o) tertiary road distance, (p) slope, (q) elevation, (r) housing cost or apart-
ment price, (s) empirical likelihood of changing into built-up, and (t) empirical likelihood of changing into mixed
built-up land cover during 1996–2006.
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4.4. Model Validation

In the present study, to validate the results of simulation by the three modeling
approaches the three simulated LULC maps (Figure 16) of KMA (2016) were compared
with that of the actual LULC map of 2016 (Pontius 2000; Ahmed and Ahmed 2012). It
shows that the MLPNN-simulated map closely approximates the actual land covers of
KMA (Figure 16c). However, the STCHOICE and CA-MARKOV simulated maps deviate
from the actual scenario to a large extent as compared to the one generated by the
MLPNN approach. The present study employed three approaches for model evaluation:
(a) per category wise percentage of correct prediction (PCP), (b) Kappa statistics and
components of agreement and disagreement and (c) through building confusion matrices.
However, many other updated techniques of model evaluation (e.g., Shafizadeh-
Moghadam et al. 2021) have been used by different researchers discussion on which is
outside of the scope of present study.

Table 10 presents class-wise comparison in the PCP in areas (ha) under different land
covers with their prediction deviation (%) between actual and simulated maps of KMA.
Less deviation in the areas illustrates more consistency in prediction, signifying the simu-
lation as robust and vice versa. The STCHOICE model performed well in the predictions
of bare land and water bodies as compared to other classes. The performance of CA-
MARKOV was found satisfactory in the cases of bare land, water bodies, and built-up
covers, depicting the magnitude of deviation less than ± 2%, whereas the MLPNN per-
formed adequately in the simulation of all land cover classes. The results under the
MLPNN show the magnitude of error less than or around ± 2% for all the six categories

Table 9. Summary of simulation performance for the nine transition sub-models using MLPNN modeling.

Transition
sub-model

Sample
size (pixels)

Model
accuracy
rate (%)

Skill
measure

Training
RMS Testing RMS

Most
influential
variable

Least
influential
variable

Agriculture
to
built-up

7672 96.98 0.9396 0.1689 0.1682 Distance from
built-
up surface

Distance
from
metro

Agriculture
to mixed
built-up

10000 96.20 0.9240 0.1940 0.1937 Distance from
mixed built-
up surface

Commercial
distance

Bare land to
built-up

10000 92.90 0.8581 0.2372 0.2421 Distance from
built-
up surface

Commercial
distance

Bare land to
mixed
built-up

10000 92.76 0.8553 0.2500 0.2495 Distance from
mixed built-
up surface

Distance
from
metro

Mixed built-
up to
built-up

10000 89.21 0.7842 0.3080 0.3067 Distance from
built-
up surface

Population
density

Vegetation
to
built-up

10000 98.51 0.9701 0.1263 0.1257 Distance from
built-
up surface

Primary
road
distance

Vegetation
to mixed
built-up

10000 93.01 0.8602 0.2361 0.2384 Distance from
mixed built-
up surface

Nearby
town or
city
distance

Water bodies
to
built-up

10000 97.23 0.9447 0.1460 0.1497 Distance from
built-
up surface

Railways
distance

Water bodies
to mixed
built-up

10000 96.69 0.9339 0.1515 0.1512 Distance from
mixed built-
up surface

Distance
from
metro
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(Table 10). In addition, although the performance of CA-MARKOV is adequate in the
case of built-up cover, the land cover of mixed built-up is overestimated by aþ 8.25%;
whereas, the MLPNN predicted built-up and mixed built-up land covers with a marginal
error of about ± 2%. Thus, the margin of prediction error is found to be minimum for
the MLPNN modeling; hence, the performance of MLPNN simulation, as depicted by
Table 10, is reasonably better as compared to the results of STCHOICE and CA-
MARKOV modeling.

Table 11 presents Kappa statistics and components of agreement and disagreement
relating to assessing the accuracy and validation of the simulated maps of KMA for 2016.
The Kappa index of agreement, that is, Kstandard is observed at 0.54, 0.69 and 0.90 for the
STCHOICE, CA-MARKOV and MLPNN simulations, respectively. Thus, the level of
agreement achieved in the MLPNN simulation can be called as ‘perfect,’ while it is
‘moderate’ and ‘substantial’ for the STCHOICE and CA-MARKOV simulations,

Figure 13. The MLPNN generated the potential for the transition from non-built-up land covers to mixed built-up
cover during 1996–2006; (a) potential for the transition from water bodies to mixed built-up; (b) potential for the
transition from vegetation to mixed built-up; (c) potential for the transition from agricultural land to mixed built-up;
and (d) potential for the transition from barren land to mixed built-up land cover.
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respectively (Table 11). The cell-by-cell visual comparison of the Kstandard between the
actual and simulated scenarios for the three models and also reflects a similar trend spa-
tially as represented in Figure 17. Apart from the Kstandard, all other measures of the
agreement under the Kappa family also feature relatively higher values for the MLPNN
simulation. Moreover, the levels of total agreement and disagreement are found to be the
highest and lowest, respectively, in the case of the MLPNN simulation (Table 11).

Further, the accuracy of the simulated LULC maps of 2016 produced by the three
modeling approaches was assessed by building corresponding confusion matrices for the
three simulated maps, after comparing the simulated maps with the actual LULC map of
2016. The results of overall accuracies were found at 61.43, 75.46 and 92.78% for the
STCHOICE, CA-MARKOV and MLPNN simulations, respectively. Apart from the overall
accuracies, the LULC class wise producer’s and user’s accuracies yielded better results in
case of MLPNN modeling, while the same found worst in the case of STCHOICE model-
ing. Therefore, in the present study, the MLPNN approach performed best in all terms of
model evaluation compared to the other two modeling approaches.

Figure 14. The MLPNN generated potential for transition from other non-built-up land covers to built-up cover during
1996–2006; (a) potential for transition from water bodies to built-up; (b) potential for transition from vegetation to
mixed built-up; (c) potential for transition from mixed built-up to built-up; (d) potential for transition from agricultural
land to built-up; and (d) potential for transition from barren land to built-up land cover.
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4.5. Predicting future urban growth

The model validation reveals the MLPNN as the best-performed modeling approach in
the present study. Hence, the MLPNN was employed for simulating future urban growth
in KMA for the next two decades, that is, for 2036 (Figure 18). Finally, the spatial

Figure 15. The MLPNN-Markov simulated LULC map of KMA for the year of 2016.

Figure 16. Three simulated LULC maps of KMA for 2016; (a) the STCHOICE model simulated LULC map of KMA for
2016; (b) the CA-MARKOV model simulated LULC map of KMA for 2016; and (c) the MLPNN model simulated LULC
map of KMA for 2016.
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Table 10. Per category wise comparison of the percentage of correct prediction (PCP) between actual and simulated
maps of KMA (2016) for the three modeling approaches.

Actual (2016) STCHOICE (2016) CA-MARKOV (2016) MLPNN (2016)

Area (Ha) % Area (Ha) % Error (%) Area (Ha) % Error (%) Area (Ha) % Error (%)

Water bodies 22919.94 13.29 20632.86 11.97 1.33 20621.16 11.96 1.33 20360.34 11.81 1.48
Vegetation 17354.16 10.07 28129.68 16.32 �6.25 30430.26 17.65 �7.58 17511.39 10.16 �0.09
Mixed built-up 30231.63 17.53 22483.53 13.04 4.49 16008.03 9.28 8.25 32211.27 18.68 �1.15
Built-up 54384.75 31.54 47821.41 27.74 3.81 52069.05 30.20 1.34 58011.84 33.65 �2.10
Agricultural land 25444.89 14.76 30456.09 17.67 �2.91 31670.01 18.37 �3.61 25793.46 14.96 �0.20
Bare land 22072.59 12.80 22884.39 13.27 �0.47 21609.45 12.53 0.27 18519.66 10.74 2.06
Total 172407.96 100 172407.96 100 0 172407.96 100 0 172407.96 100 0

Table 11. Summary of Kappa statistics and components of agreement and disagreement for the three modeling
approaches: STCHOICE, CA-MARKOV and MLPNN.

Indices/components STCHOICE model (2016) CA-MARKOV model (2016) MLPNN model (2016)

Kstandard 0.5392 0.6941 0.9025
Kno 0.6494 0.7659 0.9258
Klocation 0.6338 0.7678 0.9178
Khisto 0.8820 0.8270 0.9560
Fraction correct 0.4000 0.5490 0.8130
Agreement chance 0.1429 0.1429 0.1429
Agreement quantity 0.2050 0.2011 0.2049
Agreement grid cell 0.3517 0.4553 0.5886
Disagree grid cell 0.2032 0.1377 0.0527
Disagree quantity 0.0974 0.0630 0.0109

Figure 17. Cell-by-cell level of Kappa agreement between actual and simulated LULC maps of KMA (2016) for the
three modeling techniques; (a) comparison for the STCHOICE modeling, (b) comparison for the CA-MARKOV modeling,
and (c) comparison for the MLPNN modeling.
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distribution of land covers, mainly built-up and mixed built-up covers in the simulated
map, was examined applying a point pattern analysis (quadrat count tests and spatial
Kolmogorov-Smirnov tests) for testing consistency of the simulation, as in Helbich (2012)
and Shafizadeh-Moghadam and Helbich (2013). The result suggests a significant cluster
pattern of the future built-up cover in KMA, which is better than random spatial distribu-
tion with p < 0:001:

The trends of land cover transition during 2006–2016 and 2016–2036 are presented in
Table 12. As discussed earlier, diagonal elements of the matrices depict probability values
for self-replacement, indicating land cover types to remain similar as present with respect
to time; on the contrary, off-diagonal values represent probability values of change from
one land cover to another category. During 2006–2016, the transition probability of
changing into built-up remained higher, as found during 1996–2006 (Table 12). However,
the probability of transition into mixed built-up from vegetation and bare land increased
during 2006–2016 as compared to 1996–2006. Therefore, all the non-built-up covers
depict a higher probability to change into built-up and mixed built-up covers during
2006–2016. Table 12 also presents the transition probability values of changing during the
future 20 years, that is, from 2016 to 2036. The transition into built-up cover is likely to
deepen during 2016–2036. The land covers like vegetation, barren land, water bodies
reflect an increased probability to be converted into built-up areas. During the period,
even mixed-built-up covers are also likely to be transformed into built-up covers
(Table 13).

Figure 19 and Table 13 present class-wise changes in areas of the land covers during
1996–2006, 2006–2016 and 2016–2036. The results highlight that the share of built-up
cover is predicted to increase from 31.54% in 2016 to 55.05% in 2036, amounting to an
increase of about 24% at the cost of other non-built-up land covers, particularly bare
land, agricultural land and vegetal cover. As a consequence, land covers like barren land,

Figure 18. The MLPNN predicted future urban growth in KMA for 2036.
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vegetation, water bodies, and agricultural land are likely to sacrifice their areas up to 10%
in the near future. The decadal built-up growth is expected to increase in the near future
as compared to previous decades. The mixed built-up growth rate is predicted to decrease
marginally as a result of large-scale conversion into built-up cover.

Table 12. The MLPNN derived transition probability matrix presenting the probability of each land cover to change
to other land covers during 2006–2016 and 2016–2036.

Period LULCs Water bodies Vegetation Mixed built-up Built-up Agricultural land Bare land

2006–2016 Water bodies 0.455 0.0823 0.1168 0.0781 0.1167 0.1511
Vegetation 0.0825 0.2931 0.3654 0.0426 0.0543 0.1621
Mixed built-up 0.0001 0.0011 0.3817 0.6169 0.0002 0
Built-up 0.0001 0.0004 0.1685 0.8302 0.0008 0
Agricultural land 0.1558 0.0502 0.0902 0.0712 0.3899 0.2427
Bare land 0.1069 0.0615 0.1917 0.1776 0.2467 0.2156

2016–2036 Water bodies 0.1472 0.1414 0.0994 0.3261 0.1681 0.1178
Vegetation 0.1085 0.2571 0.135 0.2461 0.1432 0.11
Mixed built-up 0.0002 0 0.0894 0.9104 0 0
Built-up 0.0002 0 0.0241 0.9755 0.0001 0.0001
Agricultural land 0.1463 0.1553 0.0734 0.1432 0.2979 0.1838
Bare land 0.1335 0.1623 0.0811 0.1944 0.2626 0.1661

Table 13. Magnitude of areas (ha) under different land covers with a changing trend from 1996 to 2036 in the
metropolitan of KMA.

LULC classes

1996 2006 2016 2036

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Agricultural land 27423.18 15.85 27782.64 16.05 25444.89 14.76 23496.75 13.61
Bare land 22391.46 12.94 21190.86 12.24 22072.59 12.80 7464.69 4.32
Built-up 27781.65 16.05 41439.87 23.95 54384.75 31.54 95059.71 55.05
Mixed built-up 26995.68 15.60 27329.58 15.79 30231.63 17.53 25109.55 14.54
Vegetation 40090.86 23.17 32273.01 18.65 17354.16 10.07 4377.60 2.54
Water bodies 28381.05 16.40 23042.52 13.31 22919.94 13.29 17170.92 9.94

Figure 19. Present and future trend of change in the LULCs (ha) of KMA during 1996–2036.
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5. Discussion

Over the years, there has been a promising development in modeling urban growth and
capturing the spatial and temporal dynamics of urban growth. A comparative modeling
approach helps us to understand the strength and weaknesses of involved modeling tech-
niques. The present study has adopted such a comparative approach, which deployed
three RS-GIS integrated strategies, viz., STCHOICE, CA-MARKOV and MLPNN to
model urban growth dynamics in KMA. First, each of the techniques was engaged to
simulate the urban growth scenario for 2016. Based on the model validation results, the
MLPNN integrated with MC was selected to predict future urban growth in KMA for
2036. The results of the PCP and Kappa agreement are found to be better for MLPNN
modeling as compared to CA-MARKOV and STCHOICE techniques. The level of Kappa
agreement between the actual and simulated land cover of 2016 is observed highest in the
case of MLPNN modeling (0.9025) followed by CA-MARKOV (0.6941) and STCHOICE
(0.5392) modeling, respectively.

The STCHOICE creates a stochastic land cover map by evaluating and conditional
probabilities that each land cover exists at each pixel based on the past pattern of land
cover change. In the Markovian process, a future prediction is a function of time where
the future is predicted based on immediately preceding state, that is, present, without any
consideration of spatiality or spatial contiguity. Urban growth is a complex spatial and
temporal phenomenon where a large number of driving factors interplay. Thus, the rela-
tively poor performance of the STCHOICE technique in the present study can be attrib-
uted to the lack of capturing spatial contiguity. On the other hand, the CA-MARKOV
combines CA and MC analysis for modeling land cover change where the change of state
of a pixel depends on time as well as state of the adjacent pixels in a defined space. It
assumes that spatial configuration affects future land cover changes through interaction
among locally defined land covers. The advantage of this kind of modeling is that the
development of the suitability surface is based on MCE analysis. The MCE allows users to
incorporate different socioeconomic and bio-physical factors and constraints for an
objective under consideration. It also enables a user to standardize factors as per require-
ment and to weigh factors applying pairwise comparison procedure under the AHP
framework. As a result, the CA-MARKOV modeling is widely applied in urban growth
simulation for its simplicity, flexibility, intuitiveness, and ability to capture spatiotemporal
processes (White and Engelen 1993; Sante et al. 2010; Eastman and Toledano 2018;
Olmedo and Mas 2018). Therefore, in the present study, the CA-MARKOV could simu-
late the urban growth of KMA (2016) with a much higher precision as compared to
STCHOICE in terms of the agreement between the simulated and actual scenarios.

Besides, the MLPNN is a popular ANN that inspires by the function of the brain and
is a powerful non-linear model that predicts output data from a given input (Taud and
Mas 2018). The MLPNN is a feed-forward neural network that has hidden layers between
input and output layers and uses a BP algorithm based on information from training
data. BP involves forward and backward propagations that are repeated iteratively until
the error of the network minimizes to an acceptable level. The training of the network is
accomplished with the objective to cultivate proper weights for both connections between
input and hidden layers as well as hidden and output layers in order to classify unknown
pixels (Atkinson and Tatnall 1997; Ahmed and Ahmed 2012). In the present research, a
sum of nine transitions were modeled from non-built-up to mixed built-up and built-up
applying the MLPNN modeling, in which a total of nineteen biophysical and socioeco-
nomic explanatory variables were applied for each transition being modeled. In all cases,
the obtained model training accuracies were around or more than 90%, with the skill
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measure close to 0.9 or more and RMS about 0.1. Therefore, unlike the other two models,
the MLPNN provides users a great deal of flexibility to train and validate each model or
transition sub-model with a high level of accuracy. Besides, it also provides information
about the contribution of each explanatory variable for each sub-model, including step-
wise assessment through BP, which allows the user for an easy determination of most par-
simonious model (Eastman and Toledano 2018).

The CA-MARKOV and MLPNN modeling reveal that proximity to built-up areas,
proximity to metro stations, the likelihood of LULC class, proximity to town, and prox-
imity to major roads are the primary drivers behind the urban expansion in KMA.
Therefore, the local or proximity factors play major roles in the urban dynamics and
expansion of the metropolitan.

KMA has witnessed incessant land consumption for urban built-up growth over time
at the expense of non-urban covers. However, there is a significant difference in the rate
of growth between urban (core) and peri-urban areas (Sahana et al. 2018; Rahaman et al.
2019). Positive growth in built-up cover and negative growth in mixed built-up cover
characterize the KMA’s statuary urban areas (core). However, along with the peri-urban
areas, as a result of peripheral land consumption, the built-up and mixed-built-up areas
are rapidly expanding. This enlightens the process of conversion of mixed built-up class
into the built-up class around the periphery in KMA. It also demonstrates that the mixed
built-up cover is mostly being converted to built-up cover in the central KMA, while
along the peri-urban areas, all non-built-up class are largely being converted into mixed
built-up class. The rate of land consumption along per-urban areas reflects an accelerated
pace. The findings indicate that the KMA has been witnessing typical urban sprawl during
recent years. On the one hand, unlike the central portion of KMA, which is getting more
compact with time, the peri-urban areas are fast growing, featured by leapfrog and frag-
mented built-up development. In its report on SDG 11 and indicator 11.3.1, UN-Habitat
(UN-Habitat, 2018a, 2018b), emphasized the benefits of compact urban development as
opposed to sprawling. This study reveals that the urban as well as peri-urban areas do not
have similar land consumption and land-use efficiency in respect to SDG indicator11.3.1.
The central KMA reflects better land-use efficiency as a result of compact growth com-
pared to the periphery reflecting leapfrog growth as a result of rapid urban sprawling.

The MLPNN-yielded future urban growth patterns for 2036 reveal that as a result of net
loss in other LULCs including the mixed built-up cover, the built-up cover is anticipated to
grow further. In the near future, the land covers such as vegetal cover, bare land, agricul-
tural land, water bodies are likely to be affected mostly by this incessant concretization.
Although built-up areas are proliferating in all directions around the metropolitan, particu-
larly the regions towards the south and south-east are expected to be immensely concretized
in the coming decades. Besides, around a net 3% loss in mixed built-up areas indicates fur-
ther compact urban growth in KMA in the near future. Therefore, the central KMA is
expected to be featured by a better LUE in the future compared to the present scenario as a
result of further compact growth in the near future. However, the peri-urban areas are pre-
dicted to grow rapidly in the future as a result of further land consumption and conversion
of non-built-up covers into mixed built-up cover. Therefore, there is a need for proper
planning and policy framework, especially for the urban development over the peri-urban
areas in KMA, to achieve overall sustainability as proposed in SDG indicator 11.3.1.

Since KMA is the largest metropolitan in eastern India, it attracts populations from all
corners of West Bengal and neighboring states. Because of such ever-increasing urban-
ward migration in search of jobs, other opportunities, and a better standard of life, thou-
sands of people are migrating to the metropolitan of KMA. The decadal population
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growth analysis as studied by Cox (2012) confirms that a larger segment of the migrants
prefer to settle along the peripheral part of KMA. Very high land value, higher apartment
price, congestion, environmental pollution in the central part of the metropolitan on the
one land and the provision of urban amenities in peripheral areas and recent development
of some new township along the periphery of the metropolitan could be possible causes
behind such pattern of urbanization. Moreover, residing at peripheral towns and town-
ships, people can easily commute to the central part of the metropolitan for their daily
livelihood and jobs, provided the high accessibility and connectivity prevailing in the
metropolitan by means of the road, rail, metro and waterway and tram linkages. As a
result, peripheral areas are booming with a mass concentration of population and therein
concretization. The planning and developing solutions to challenges of complex urbaniza-
tion as in KMA requires commitment and action on the part of a number of stakeholders
identified by the UN who have a stake in the achievements of SDG 11.3. Integrated and
sustainable planning and management for human settlement development along the per-
ipheral regions are keys to achieve the SDG target 11.3 in KMA. This, in return, would
result in better LCRPGR, particularly over the peri-urban areas required to achieve sus-
tainable urbanization in KMA.

6. Conclusions

In this study, the spatiotemporal urban growth dynamics in KMA have been modeled in
a comparative modeling framework employing three RS-GIS integrated techniques,
namely STCHOICE, CA-MARKOV and MLPNN coupled with MC. The MLPNN model-
ing appears to be the most effective and efficient approach in simulating future urban
scenarios compared to CA-MARKOV and STCHOICE, as the former over-performed the
other two in the present study. The CA-MARKOV is also a widely used modeling
approach in predicting future urban growth, particularly in the cases of Indian cities.
However, the uniqueness of MLPNN, including the BP-driven linkages between input,
hidden, and output nodes, makes it a reasonably better performer in simulate urban
growth in a complex urban system. It also can simulate urban growth when the number
of input variables is few or not sufficient. Hence, the MLPNN modeling could be effective
for modeling urban growth in rapidly changing urban scenarios not just for KMA, but
for all other cities in developing countries. However, the MLPNN modeling success is
determined not only by the variables chosen, the number of hidden layers, nodes, and
training data, but also by training parameters such as learning rate, number of iterations,
and so on. Thus, the comparative modeling framework adopted in the present study may
be useful in studies of urban growth modeling.

The inclusion of the selected biophysical and socio-economic variables has strength-
ened the results in the present modeling. The present study finds proximity to built-up or
developed areas, distance metro, nearness to town or city, the empirical likelihood of land
use, major road distance and railway distance are the most influential factors, while slope,
elevation, distance from minor road, air quality index are least affecting factors.
Therefore, the proximity and local factors play significant roles behind urban dynamics in
KMA. However, the selection of explanatory variables has always been critical in such
modeling studies. Hence, there always exists further scope to explore the better choice of
a variable set to enhance the simulation performance.

The present study offers the first-ever implementation of modeling urban growth in
whole KMA linking with urban land consumption and sustainability. Studies often investi-
gate the present scenario of urban growth in a city to assess the LUE and LCRPGR.
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Modeling urban growth offers to track the indicators both in the present and even with
changing scenarios in the future. Moreover, the comparative modeling framework adopted
in the present study can predict the changing scenario of land consumption with respect to
SDG 11.3.1 with greater accuracy. Therefore, depending upon changing scenarios required
for sustainable long-term urban planning, the current modeling approach may be helpful in
allocating resources for the present and the future; hence, it may be useful for urban plan-
ning and policymaking. The present research finds that different LULCs in an urban system
have a distinctive level of spatiotemporal dynamics and variability. Thus, the present model-
ing framework may also be helpful to the urban planner and policymakers to assess LUE
and LCRPGR differently for different LULCs, for example, for built-up and mixed built-up
covers separately. Accordingly, this modeling approach may help to formulate a policy
framework in order to achieve sustainable urbanization better in cities as proposed in SDG
target 11.3. Furthermore, the methodology can be easily adapted to other Indian cities.

7. Scope of future research

Limitations of present research work and future research directions are listed as follows.

� Only analysis and simulation of urban growth are not fruitful until the results are
incorporated in urban planning and policy-making. Therefore, future research work
may be conducted on policy formulation for future urban planning based on the out-
come of the present research.

� The predicted pattern of future urban growth is dependent on the observed past and
present land cover dynamics; hence, may change with changing scenarios in the future.
Further research may be conducted in this regard.

� The present study used moderate resolution satellite images (30 m); therefore, the use
of finer satellite images could result in better accuracy.

� The present study considered a 20-year study period. More extended time-series data
may be used for understanding further dynamics (if any).

Note

1. A Census town is one which is not statutorily notified and administered as a town, but
nevertheless attained urban characteristics as defined by the Census of India.
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