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We established the criteria for thermal stability of a most general black hole in the form
of a series of inequalities connecting second-order derivatives of the black hole mass with
respect to its parameters. The mass of a black hole depends solely on these parameters,
e.g. horizon area and electric charge are these parameters for non-rotating charged black
hole. We also introduced the notion of “Quasi stability”. It is known how to calculate
the fluctuations of these parameters for both stable and quasi stable black holes. In this
paper, we consider the simplest black hole having nontrivial parameter, i.e. electrically

charged non-rotating asymptotically flat Reissner–Nordstrom black hole (AFRNBH).
We will show here that this black hole is not stable anywhere in its parameter space,
but it is actually quasi stable, having positive specific heat in some region, violating
Hawking’s prediction. In fact, this black hole will be shown to exhibit phase transition
which is structurally quite different from that in case of Schwarzschild black hole, as
predicted first by Hawking. This black hole will also be shown to try to resist its decay
under Hawking radiation, but ultimately remains unsuccessful.

Keywords: Quasi stable black hole; black hole thermodynamics; phase transition.

PACS No.: 04.70.Dy

1. Introduction

It is well known from semiclassical analysis that non-extremal, asymptotically flat

black holes are thermally unstable due to decay under Hawking radiation, leading

to their specific heat being negative.1 Sign of specific heat, as a sole criteria, deter-

mines the stability of any black hole in semiclassical theory of Hawking. This theory

as its drawback treats only matter as quantum entity, spacetime is still classical.2,3

We had addressed this issue in our earlier works,4,5 and studied the thermal stability

of black holes, from a perspective that is inspired by a definite proposal for quan-

tum spacetime (like Loop Quantum Gravity (LQG),6,7) rather than by semiclas-

sical assumptions. We got a series of inequalities, connecting various second-order
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derivatives of black hole mass with respect to its parameters, as criteria for thermal

stability, rather than just a single condition like semiclassical analysis predicted.

We still have not studied the equivalence/non-equivalence between this series of

stability criteria and positivity of specific heat.

We by virtue of our quantum analysis showed that non-extremal, asymptotically

flat black holes do not satisfy all the stability criteria simultaneously.4 But they

do satisfy some of the stability criteria in certain region of parameter space. We

call these “quasi stable” black holes in that particular regime of parameter space.

In fact AdS black holes, e.g. AdS Kerr-Newman black hole,8 although thermally

stable in certain region of their parameter space, exhibit quasi stability in certain

other regions of their parameter space. Thus, quasi stability is an intrinsic nature

of the thermal black holes. Quasi stable black holes are shown to have bounded

fluctuations for some of their parameters in certain regime of parameter space-like

stable black holes.8–10 But they, due to unfulfilling of all the stability criteria, will

ultimately decay under Hawking radiation.

Hawking showed that phase transition was possible in AdS Schwarzschild black

hole.11 It is marked by the sign change of its specific heat that in fact blows up at

the point of phase transition. This in terms of fluctuation happens as its area fluc-

tuation starts to diverge from the point of phase transition and keeps on diverging

in unstable phase.4,8–10

It is interesting to note that Schwarzschild black hole, be it AdS or asymptoti-

cally flat, has only one parameter, namely its horizon area. Thus there is only one

stability criterion even from our quantum analysis and hence fluctuation of that

only parameter is to be considered for this black hole. But quasi stable black holes,

essentially having multiple parameters, have multiple numbers of stability criteria.

Some of these criteria are definitely violated for them at least regime wise in parame-

ter space. These black holes have individual fluctuations for each of its parameters.

Now, it is well known that instabilities in thermodynamics often point to phase

transitions. Thus, various instabilities exhibited by quasi stable black holes may be

associated with other forms of phase transitions apart from the known Hawking-

Page phase transition.11 We will here look for that in case of Asymptotically Flat

Reissner–Nordstrom Black Hole (AFRNBH).

We should obviously look for a black hole with at least one more parameter other

than horizon area to study the above in details. Thus, we in this paper consider

AFRNBH. The mass of this black hole is related to its electric charge and horizon

area in a simple way that various calculations can be done exactly without any

approximation. This consequently helps to extract out physics relatively simpler

way in an exact manner. AFRNBH, will be shown, is a quasi stable black hole

and tries to slow down its decay under Hawking radiation. Its charge fluctuation,

determines its electric equilibrium, will be shown to cause phase transition that

differs from the Hawking-page phase transition of Schwarzschild black hole. This
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phase transition, as occurs in decaying black hole, has to be different in nature in

comparison with the Hawking-page phase transition. Most interestingly, through

this example of AFRNBH, we will explicitly show that positivity of specific heat

does not necessary imply the thermodynamic stability of a black hole.

This paper is organized as follows. In Sec. 2, we will recapitulate some of our

earlier works briefly for sake of completeness, with emphasis on AFRNBH. We will

also show that this black hole is actually quasi stable under Hawking radiation.

In Sec. 3, we will calculate the fluctuations for the parameters of AFRNBH. We

will also discuss on possible phase transition in details. In Sec. 4, we will compare

our obtained results with Hawking’s theory and will also discuss over the issue

of positivity of specific heat and thermodynamic stability of black hole. Section 5

concludes.

2. Quasi Stability of AFRNBH

The Hilbert space of a generic quantum spacetime is product of bulk and boundary

space. Thus, a generic quantum state on this Hilbert space is tensor product of bulk

and boundary state. Now, the full Hamiltonian operator, operating on this Hilbert

space, has two parts. One part is the bulk Hamiltonian and another is the boundary

Hamiltonian. Similarly, generic charge operator, operating on this Hilbert space, has

two parts; one is bulk part and another is boundary part. The first class constraints

are realized on this Hilbert space as annihilation constraints on the quantum states.

The bulk Hamiltonian operator thus annihilates bulk physical states. Similarly,

Gauss’s constraint of electrodynamics is realized by the annihilation of the bulk

physical states by the bulk charge operator. The mathematical details of these

facts are given in Ref. 4.

Any charged black hole has discrete values of horizon area and electric charge.

This is expected in any quantum theory of gravity, e.g. Loop Quantum Gravity

supports this.6 Now, we can consider a charged black hole to be immersed in a

heat bath, with which it can exchange energy and electric charge (Q). Thus, we can

write down the grand canonical partition function (ZG) as summation over possible

eigenstates with appropriate weightage.12 These states are generic quantum states

on the full Hilbert space. But the first class constraint and Gauss’s constraint reduce

the summation to only summation over the boundary states. Thus generic grand

canonical partition function becomes the same over the boundary only.4 Thus, we

do not require to know the internal statistical components of black hole at all,

considering horizon of the black hole to be the boundary of spacetime, to calculate

the full grand canonical partition function of the black hole. We can convert this

summation, with the help of Poisson’s resummation formula,13 into integration and

determine the criteria for thermal stability. An electrically charged black hole, in

thermal equilibrium, is represented by the saddle point (Ā, Q̄). Ā denotes horizon

area (A) at equilibrium and so on. It is shown earlier4 that this partition function
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turned out to be integration over the space of fluctuations a = (A−Ā), q = (Q−Q̄)

around the saddle point and is given as4

ZG ≈
∫

da dq exp

(

−
β

2
[(MAA)a

2 + (MQQ)q
2 + (2MAQ)aq]

)

. (1)

The only assumption we have made is that the mass of the black hole (M) is a

function of its electric charge and horizon area. Here, MAA ≡ ∂2M
∂A2 , MAQ ≡ ∂2M

∂A∂Q ,

etc. and they are evaluated at the saddle point. Thus, the above expression of grand

canonical partition function, although may have some similarities with semi classical

analysis, is constructed entirely from the consideration of quantum geometry of the

black hole. S(A) is the entropy of the black hole and is taken to be equal to A
4AP

,

where AP is the Planck area.2 We take 4AP equals to unity for sake of simplicity

and can bring it back just by dimensional analysis.

The convexity of the above integral (1), with the help of calculations done in

Appendix A, leads to the criteria for thermal stability of the black hole and are

either given as

(i) MQQ > 0, Sig
(

(MQQMAA−(MAQ)2)
MQQ

)

is positive, or

(ii) MAA > 0, Sig
(

(MQQMAA−(MAQ)2)
MAA

)

is positive. This is exactly equivalent to

what we obtained earlier.4

Here Sig
(

(MQQMAA−(MAQ)2)
MAA

)

denotes the sign of the function
(MQQMAA−(MAQ)2)

MAA
.

We will see soon that this way of writing the stability criteria is very helpful for

analyzing quasi stable black holes. It is important to note that these stability criteria

are completely based on possible quantum mechanical nature of the spacetime and

generic as well as we have not assumed any special property of the black hole,

except the fact that its mass is an arbitrary function of its area and charge. This

arbitrariness makes the above stability criteria applicable to so called classical black

holes as well. In fact the relationships among the mass and various parameters of

the black holes are required only to test the stability of a particular black hole,

but not to derive the generic stability criteria at all. Hawking in his case by case

approach did not give any general prescription for stability criteria of an arbitrary

black hole. In that formalism, one has to know the global structure of spacetime to

evaluate the path integral.3 But our formalism requires only the knowledge of the

structure of the horizon. In fact in our formalism, we do not have to treat black holes

case by case to obtain stability criteria. We obtained a series of stability criteria

for a generic black hole, rather than just a single criteria of positivity of specific

heat. In fact, positivity of specific heat can at most be one of the series of criteria.

We will see in this paper that in certain regime of parameter space specific heat of

AFRNBH hole is positive, although it is nowhere thermodynamically stable.

We have realistically assumed that (inverse) temperature β
(

≡ SA

MA

)

is positive.
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The mass (M) of AFRNBH depends on its parameters as14

M =

√
A

4
√
π
+

√
πQ2

√
A

. (2)

We can now calculate the temperature of AFRNBH from Eq. (2) and it will be func-

tion of its electric charge (Q) and horizon area (A). On calculation, it turns out that

temperature (T ) = 1
8
√

πA

(

1− 4πQ2

A

)

and hence is positive only if Q2

A < 1
4π . This

restricts the parameter space. At absolute zero temperature, i.e. T = 0, black hole is

thermodynamically inert in the sense that it stops interacting with its surrounding.

Thus, positivity of temperature, i.e. T > 0 is an essential criteria for thermal black

holes to interact with its surrounding and execute their thermodynamic properties.

Hence, we will not study extremal RN black hole here as it would not be interesting

from thermodynamic perspective. It is true that the above relation (2) is classical

and it is expected that this relation may acquire some corrections if one wants to

derive the same from quantum mechanical perspective. But this is not something

that we want to derive in this paper. We instead want to analyze the classical re-

lation in light of our stability criteria. We find that even this gives new results for

the thermal stability, in respect to what we have known so far.

We can calculate various second derivatives of the black hole mass (M) with

respect to its parameters from Eq. (2). On calculation, this turns out that

MQQ =
2
√
π

√
A

, MAQ = −
√
πQ

A3/2
, MAA = −

1

16
√
πA3/2

+
3
√
πQ2

4A5/2
,

(MQQMAA − (MAQ)
2) =

(

−
1

8A2
+

πQ2

2A3

)

.

Thus (MQQMAA − (MAQ)
2) is positive only if Q2

A > 1
4π . But this region of

parameter space is not accessible to any real AFRNBH as it is excluded due to

positivity of temperature. Hence (MQQMAA− (MAQ)
2) is negative through out its

physically accessible regime of parameter space. Now, MQQ is always positive while

MAA is negative if Q2

A < 1
12π . Thus, AFRNBH can never be thermally stable as it

never satisfies stability criteria completely. So,9 AFRNBH is actually a quasi stable

black hole.

3. Fluctuation and Phase Transition of AFRNBH

We have earlier shown that9 quasi stable black holes possess bounded fluctua-

tions for some of its parameters in certain regions of parameter space. So, same

is expected in case of AFRNBH. ∆(A)2 measures the fluctuation of horizon area

from its equilibrium value. It is mathematically expressed, for non-rotating charged

black hole, as,8,9 ∆(A)2 ≡
∫
da dq a2f(a,q)∫
da dq inf(a,q)

; where f(a, q) = exp
(

− β
2 [(MAA)a

2 +

(MQQ)q
2+(2MAQ)aq]

)

. Similarly, ∆(Q)2 can be defined. We, with the help of cal-

culations done in Appendix A, can determine the regions of convergences of ∆(A)2

and ∆(Q)2, if exist. Now (MQQMAA − (MAQ)
2) is always negative for AFRNBH.
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Keeping this in mind, we can conclude that

(1) ∆(A)2 always blows up as MQQ is always positive.

(2) ∆(Q)2 converges and converges to the value MAA

2β(MQQMAA−(MAQ)2) only if MAA

is negative, i.e. Q2

A < 1
12π .

Of course it is true that AFRNBH will ultimately decay. It will gradually become

smaller and smaller in size as fluctuation of its area is unbounded. Thus, even if

the ratio Q2

A is lesser than 1
12π at the beginning, it will increase as area (A) will

decrease. But this ratio cannot be greater than 1
4π . In the region 1

4π > Q2

A > 1
12π ,

electric charge (Q) of this black hole fluctuates appreciably and this fluctuation in

turn reduces the value of Q. Thus, this ratio will once again be smaller than 1
12π .

Now, again the same thing will happen, i.e. the value of Q2

A will again increase

and then it will again decrease. This will go on. The black hole will continue to

lose its area and electric charge. Thus, it heads towards a black hole with certain

minimum area,15 having almost no electric charge. It is true that charged particles

are also emitted in parallel to Hawking radiation from a charged black hole by the

mechanism of Schwinger emission of charged particles.16,17 We here consider only

thermodynamical fluctuation of electric charge to show that discharging happens

as we are considering thermodynamics of black hole solely.

Now consider the case of AdS Schwarzschild black hole. It is well known that

this black hole is thermally stable only if A > l2, l is the cosmic length.11 The only

criteria for thermal stability of this black hole is the positivity of MAA and it holds

only in the region A > l2. The specific heat of this black hole, inversely proportional

toMAA, is proportional to fluctuation of its area (∆(A)2) as long asMAA is positive.

∆(A)2 starts to diverge when MAA becomes zero and keeps diverging for negative

values of MAA. Similarly, specific heat diverges when MAA equals to zero and

becomes negative for negative values of MAA. Thus, we see that MAA equals to

zero is the point of phase transition. So, specific heat changes discontinuously during

phase transition. But fluctuation in horizon area, although blows up, does not show

any discontinuity. It is very a well-known fact that fluctuations of the parameters

of a system determine the stability and consequently the phase transitions of that

system. Thus, we can conclude that divergence in fluctuation of any parameter of

the system indicates the phase transition of that system.

We will now focus on the black hole that we are considering in this paper, i.e.

AFRNBH. The mass of this black hole depends on two parameters, its horizon area

and electric charge. So, we have to take into account the fluctuations of both these

parameters individually to consider phase transitions. Now, ∆(A)2 always diverges

and consequently this black hole cannot resist itself from decaying away under

Hawking radiation. But ∆(Q)2 does not always diverge and hence phase transition

can occur. We have already seen that MAA equals to zero marks the divergence of

∆(Q)2 and remains diverging as long as MAA is positive. Thus, phase transition

occurs when MAA becomes equal to zero. It is interesting to note that ∆(Q)2,
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evident from its expression, tends to become zero as MAA approaches to zero,

from negative side and it then suddenly starts to diverge as MAA becomes zero and

positive onwards. Thus, fluctuation of electric charge diverges discontinuously at the

point of phase transition, unlike the continuous divergence of area fluctuation in

Hawking-Page phase transition. In fact, fluctuation in electric charge is proportional

to the electric capacitance of the black hole as long as the fluctuation is converging.18

Electric capacitance of a black hole is defined and is given as, SQ ≡ β · ∂Q/∂Φ̄ and

has been shown to be equal to β ·∆(Q)2.18 Here Φ̄ is β times the electric potential

of the charged black hole. Thus, SQ equals to MAA/(2(MQQMAA − (MAQ)
2)). So,

electric capacitance changes its sign from positive to negative as the black hole

changes its phase from stable to unstable, passing through its zero value. Hence,

electric capacitance changes its sign smoothly during phase transition, unlike the

abrupt change of specific heat in case of AdS Schwarzschild black hole. Thus, we

find an explicit difference in the structure of phase transition(s) between black holes

having multiple parameters with black holes having single parameter, i.e. horizon

area.

The decay of any black hole is approximately governed by Stefan–Boltzmann

law as the profile of black hole radiation is approximately same as that of a black

body. So, luminosity (L), the power radiated per unit surface area, varies with its

temperature (T ) as L ∝ T 4. Temperature is a function of electric charge and horizon

area and hence any fluctuation in them would make temperature fluctuating as well.

This in turn makes luminosity fluctuating too. Thus, the fluctuation in luminosity

is given as

∆L ∝
(

∂T

∂A
∆A+

∂T

∂Q
∆Q

)

.

Now, T ∝ MA and hence

∂T

∂A
∝ MAA,

∂T

∂Q
∝ MAQ, ∴ ∆L ∝ (MAA∆A+MAQ∆Q).

Thus, we see the expression within the above parenthesis determines the sign of

∆L, i.e. whether decay rate would increase or not. Now, ∆A is always large negative

and MAQ is always negative. Thus, in the regime Q2

A > 1
12π , MAA is positive and

∆Q is large negative. Hence, the term MAA∆A is negative in this particular regime

and consequently tries to slow down the decay process. But the term MAQ∆Q is

positive and hence tries to fasten the decay process, compatible with the fact that

black hole is still electrically unstable. Thus, a competition goes on between these

two terms. This is certainly absent in case of unstable black hole, e.g. asymptotically

flat Schwarzschild black hole (AFSBH). The term MAA∆A becomes positive in the

regime Q2

A < 1
12π , but the term MAQ∆Q, although positive, is substantially tiny

as electric charge does not fluctuate much. This is again compatible with the fact

that black hole is electrically stable in the region Q2

A < 1
12π . Thus, there is at least

some tendency of AFRNBH to reduce its decay rate under Hawking radiation. This

tendency makes it different from any other unstable black hole.
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It is of course true that decay rate of any black hole cannot be calculated without

considering the full dynamics of that black hole. We have to consider the full-fledged

theory of quantum gravity for that. But such calculations are not done yet in any

non-perturbative theory of quantum gravity. But we can still qualitatively conclude

whether a black would enhance its decay rate in certain regime of parameter space

or not. We have done so just by considering the thermodynamical aspect of the

black hole only. This is something robust and makes our analysis unique.

4. Comparison with Hawking’s Semi Classical Theory

Hawking is the first person to discover black hole radiation.2 He in fact also pre-

dicted the thermal instability of AFSBH due to its negative specific heat.11 He also

showed that specific heat blowed up at phase transition. In fact in his case-by-case

study approach, he used the sign of specific heat as the only criteria to determine

the thermal stability.3 We will show explicitly that this is not the case here at all.

Now, specific heat (C) is defined as

C ≡
∂M

∂T
.

Since both M and T are function of Q and A. Thus, we can write

C =
∂M

∂A
·
∂A

∂T
+

∂M

∂Q
·
∂Q

∂T
.

On calculation, we find that

C = −8

(

1

8π
−

Q2

A

)/

3

(

1

12π
−

Q2

A

)

.

Following the above expression, we get

(1) C < 0 if either Q2

A < 1
12π or Q2

A > 1
8π ,

(2) C > 0 if 1
12π < Q2

A < 1
8π .

So, according to Hawking’s criteria, in the region 1
12π < Q2

A < 1
8π , AFRNBH

is thermally stable as specific heat is positive. But we have already shown explic-

itly that this black hole can not be stable any where in its accessible parameter

space. Thus, we see explicitly that the series of stability criteria, derived by us

earlier, are not equivalent with the condition of positivity of specific heat, derived

first by Hawking. It is interesting to note that specific heat in fact changes its sign

for AFRNBH, while it is nowhere stable within its accessible regime of parameter

space. Our series of thermal stability criteria hold good for Schwarzschild black

holes (both asymptotically flat and AdS) as well and there it matches with Hawk-

ing’s prediction as well. Thus when the number of parameter is one, namely, horizon

area, both the theory predicts same. This is as in those cases, our stability criteria

is essentially the criteria of positivity of specific heat, as predicted by Hawking. But

mismatches start when a black hole possesses multiple parameters, i.e. parameters

in addition to its horizon area, e.g. both rotating and non-rotating charged black
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holes. This implies that black holes with a single parameter (on which its mass

depends) is the region of common prediction. In other words, this common region

is the limit where our prediction boils down to that of Hawking. The presence of

this common limiting region is quite expected as otherwise it will be meaningless

to have a improved version of thermal stability criteria for black holes over the

existing version of stability criteria as predicted by Hawking. These evidently put

the limitations on the applicability of Hawking’s criteria over thermal stability of

a black hole in the sense that positivity of specific heat cannot be the sole criteria

for thermal stability of a generic black hole. In his semi classical theory, Hawking

treated the black holes classically. But we derived the stability criteria by treating

the spacetime quantum mechanically. Thus, we can expect even theoretically that

our result should mismatch with Hawking’s criteria at some point of time. In this

paper we have shown this explicitly in case of AFRNBH.

5. Discussion

AFRNBH, like unstable black holes, ultimately decays under Hawking radiation.

But its electric charge almost does not fluctuate in certain region of its parameter

space. It tries to resist its decay under Hawking radiation. This feature is somewhat

similar to that of a stable black hole. Thus, it possesses some sort of dual property.

Our analysis holds for macroscopic black holes. But close to end state of a black

hole, we have to solve the complicated Hamiltonian constraint. But it is true that

there would be some remnant of a black hole at its end state, with a minimum

horizon area according to theory like LQG. This fact has been mentioned in Ref. 15

in which it is concluded that these remnants could form component of dark matter

as well. In this sense, our analysis may have some impacts on dark matter physics.

We have seen that thermodynamic phase transitions, apart from known

Hawking-Page phase transition, exist in quasi stable black holes. Electrical phase

transition in AFRNBH is example such phase transition. This phase transition

occurs multiple times during its decay. The usual phase transition is character-

ized by the discontinuous sign change in specific heat. But the phase transition for

AFRNBH is characterized by the continuous sign change in its electric capacitance.

This makes the phase transition new and interesting. In fact thermodynamic phase

transition for Kerr-Newman black hole is expected to be even more interesting in

presence of its rotation. We will not although advance regarding that in this paper.

Appendix A. Calculations for Integrations

Let I1 =
∫ ∫

dx dy exp(−(ax2 + by2 +2cxy)). We can now write (ax2 + by2 +2cxy)

as
(

a(x+ cy/a)2 + (ab−c2)y2

a

)

. We redefine the variables x, y as

(

x

y

)

=





1
c

a

0 1





(

x

y

)

. (A.1)
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In terms of the variables x, y, we can rewrite I1 as

I1 =

∫

dx exp(−ax2) ·
∫

dy exp

(

−
(ab − c2)y2

a

)

and hence this integral is expressed as products of two independent integrals. Here,

Jacobian factor due the transformation of variables is identically unity. This integral

converges only when both a and (ab − c2) are positive.

Now consider the integral I2 =
∫∫

dx dy·y2 exp(−(ax2+by2+2cxy))∫∫
dxdy·exp(−(ax2+by2+2cxy))

and it converges,

using the above technique, only if (ab−c2)
a is positive, i.e. (ab − c2) and a have

same sign. Thus I2 converges even if a is negative, unlike I1. I2, if converges, is

equal to a
2(ab−c2) . Similarly

∫∫
dxdy·x2 exp(−(ax2+by2+2cxy))∫∫
dx dy·exp(−(ax2+by2+2cxy))

converges only if (ab−c2)
b

is positive, i.e. (ab− c2) and b have same sign. The last integral and I2, respectively

diverges for b ≥ 0 and a ≥ 0 if (ab− c2) is negative.

We have already expressed I1 as product of two separate integrals and hence

we can conclude from the details of I1 and I2 that
∫
dx·x2 exp(−ax2)∫
dx·exp(−ax2)

converges and

equals to 1
2a if and only if a > 0; otherwise it diverges. All the integration variables

considered here run throughout the real line and integrations are taken for the

whole range. Here, the constants a, b, c are real quantities.
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