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A B S T R A C T   

This article presents a tangible vendor–buyer cooperative strategy that benefits both, the vendor and the buyer 
where the demand is deterministic constant, and the delivery lead time follows a general distribution. To build a 
realistic coordination mechanism, a delivery tolerance time range is specified beyond which two different types 
of nonlinear penalty costs termed as an early delivery penalty cost and late delivery penalty cost are assessed. 
Shortages are allowed for a short time-span. The penalty costs are taken as a product of a linear function of 
delivery lead time and a nonlinear function of the delivery lot size. The problem is formulated as a multi-variable 
mixed-integer nonlinear programming (MINLP) problem and the objective of this research is to achieve the 
minimum integrated expected cost where decision variables are: reorder point, delivery lot size, number of 
deliveries, and delivery time thresholds. Since closed-form solutions are not immediately obtained, different 
search procedures are employed to resolve issues relating to an integer solution. Numerical results are provided 
for uniform, exponential and normal distributions of delivery lead time to establish the general model.   

1. Introduction 

The efficiency of a supply chain network is greatly influenced by the 
reliability of the supply process. The success of a supply chain lies 
beneath the proper timing of delivery of goods to the intermediate 
parties. This research work has adopted the integrated vendor–buyer 
optimization policy together with the idea of generalized lead time and 
nonlinear penalty cost for early and late delivery of shipments. This 
research contributes an improved delivery timing strategy to enhance 
over all supply chain performance. When a lot is delivered within a 
delivery tolerance period, then no penalty cost is assessed to the vendor, 
which gives latitude to both the vendor and the buyer to cope with the 
uncertainty of delivery mechanism and transportation time. 

A real-world example of the investigated problem is the motivation 
of this problem under consideration and it is explained here. In Asian 
countries, the labor charge is significantly low for which the production 
cost also becomes low. Many industries such as textile, electronic goods 
in diverse Asian countries manufacture their product at a low price and 
export them to Europe, America and Australia. They prefer the naval 
route as the transportation mode for transporting their products to 
overseas due to low transportation cost. Although the transportation 

cost in a naval route is low; but the chance of delivery delay is high 
which may cause significant loss to the buyer (importer). The buyer 
incurs the expense for keeping the storehouse ready before receiving the 
ordered lot and loses both market goodwill and the potential profit 
during market peak time if they are not delivered in time. These losses 
are increased with an increasing number of units. Another practical 
situation in such import–export business is also explained here. Usually, 
the large-scale industries such as textile industries, steel industries, 
electronic goods industries and automobile industries maintain their 
owned or rented warehouses. They bear the expense to maintain the 
infrastructure and good storage environment (temperature, humidity, 
etc.) of the warehouses. If the ordered lot reaches too early, then 
sometimes a space problem may arise. Such space problem is increased 
with an increase in the number of units. To keep the early delivery lot, 
the buyers must rent another storehouse and bear the burden of main
taining it, which increases the storage cost, and hence the total cost. To 
discourage the practice of such a costly early and late delivery, the buyer 
imposes a significantly high penalty charge to the vendor for both early 
and late arrival of ordered items. Such types of penalty cost scenarios are 
usually found in international business of garments and other luxury 
goods. 
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Plenty of research works are available including a lead-time 
consideration. A brief literature survey is given in the following 
subsection. 

1.1. The literature 

Realizing the necessity of compact coordination in a supply chain 
system, a significant number of researchers have incorporated several 
papers in multi-dimensional directions including variable lead time. Pan 
and Yang (2002) have developed a supply chain model with controllable 
lead time and stochastic lead time demand. Ouyang et al. (2004) have 
extended the work of Pan and Yang (2002) by introducing the concept of 
stochastic demand in conjunction with controllable lead time while 
Hoque and Goyal (2006) have extended Pan and Yang (2002) model by 
incorporating the shipments of equal or unequal sized batches together 
with controllable lead time. A reduction function for lead time is 
considered by Hsu and Huang (2009) whereas Li et al. (2012) have 
developed a supply chain coordination system for multi-product with 
controllable lead time. Braglia et al. (2014) have investigated a two- 
stage supply chain with a safety stock management and consignment 
stock agreement where they have considered the demand and lead time 
both are random in nature. An operational consignment stock policy for 
normally distributed demand is stated by Yi and Sarker (2014) where 
buyers’ space limitation and controllable lead time are considered. Be
sides these, many articles are incorporated by considering fixed as well 
as variable lead time. A few of them are Glock (2012), Yi and Sarker 
(2013), Rodrigues and Yoneyama (2020), and Das Roy and Sana (2021). 

In management and other scientific researches, the normal distri
bution is the most commonly used probability distribution among the 
others. Several researchers have developed inventory models with the 
consideration of normal demand. Dey and Chakraborty (2012) have 
framed an inventory model where the demand rate is assumed to be a 
normally distributed fuzzy random variable. They have considered both 
non-truncated and the truncated normal distributions of demand. The 
concept of truncated normal distribution is also discussed by Thomo
poulos (2015). Hossain et al. (2017) have considered a supply chain 
system with a non-truncated normal distribution of lead time while an 
integrated supply chain model with normally distributed lead time de
mand is investigated by Das Roy and Sana (2020). The present study has 
discussed three types of lead time distributions. Non-truncated normal 
distribution of lead time is one of them. 

The occurrence of a stock-out situation in an inventory management 
system is very common. Shortages can be backlogged in two ways: 
Partially or completely. Many authors [Ng et al. (2001), Das Roy et al. 
(2012, 2014), Hossain et al. (2017), San-Joséa et al. (2019)] have 
included backlogging in their studies. The proposed article has also 
considered backlogging. Any article that has addressed the concept of 
nonlinear early delivery penalty cost together with nonlinear late de
livery penalty cost in a supply chain having random delivery lead time 
seldom follows a general distribution. Recently, researchers have 
focused on the consequences when the lead time is stochastic in nature 
and follows some known probability distributions. Lee et al. (2007) have 
investigated an integrated inventory model with stochastic lead time, 
ordering cost reduction and backorder discount whereas a multi- 
supplier and single buyer supply chain coordination system with a 
milk-run delivery network is presented by Zhou et al. (2012). They have 
included stochastic lead time and capacity constraints in their study. A 
supply chain model with stochastic lead time is also discussed by Lin 
(2016) and Hossain et al. (2017). 

The concept of penalty cost for delivery lateness is addressed by 
many authors. Guiffrida and Jaber (2008) have introduced penalty cost 
for early and late delivery in a supply chain to study the managerial and 
economic impacts of reducing delivery variance while an optimal po
sition of supply chain delivery window which minimizes the expected 
penalty cost for delivery earliness and lateness is determined by Bushuev 
and Guiffrida (2012). Zhu (2015) has incorporated a decentralized 

supply chain where the penalty cost is considered in terms of compen
sation to the customer for delivery lateness. Hossain et al. (2017) have 
discussed a vendor–buyer cooperative policy in an integrated supply 
chain model with a general distribution of lead time. They have intro
duced the concept of penalty cost for delivery lateness. A cost base de
livery performance model is developed by Bushuev (2018) where he has 
considered an expected penalty cost for delivery earliness and tardiness. 
The present study introduces nonlinear penalty costs for early delivery 
as well as for late delivery of the ordered lot size. Biswas and Sarker 
(2020) have developed an operational planning of supply chains in a 
production and distribution center with just-in-time delivery policy. Lin 
et al. (2021) have showed how to reduce optimally the setup cost and lot 
size for economic production quantity model with imperfect quality and 
quantity discounts. A comparison between the contributions of previous 
works with the present study is presented in a tabular form (see Table 1). 

Flexibility in lead time plays an important role in operating a coor
dinated system within a certain tolerance time (early or late arrivals of 
shipments). From Table 1, the contribution of the present paper in the 
literature and the comparison of the proposed research with other ar
ticles is clearly observed. Two main points are highlighted in this 
respect. First, most of the researchers have restricted their study by 
considering lead time as a deterministic variable or random variable 
which follows a specific probability distribution. Consideration of gen
eral distribution of lead time is rarely observed in those studies which is 
one of the features of this study. Secondly, very few authors have 
included a penalty cost for early or late delivery or both. Also, the re
searchers who have included penalty cost for early or late delivery, have 
considered linear penalty cost. In the present paper, a nonlinear penalty 
cost has been addressed to generalize the penalty function. The method 
also leaves another aspect of the contributions to capture other variants 
of such cost function as the system subscribes to fit the existing system. 

1.2. Definition and objective of the problem 

In the present study, an integrated vendor-buyer cooperative supply 
chain network is proposed where the lead time is assumed to be 
generally distributed. The buyer provides a delivery tolerance range to 
the vendor. If the vendor delivers the ordered lot beyond this delivery 
tolerance range, he must face two types of penalty costs: early delivery 
penalty cost and late delivery penalty cost. If the delivery lot reaches before 
the lower limit of a delivery tolerance range, then it increases the 
holding cost of the buyer. The buyer charges a penalty cost termed as 
early delivery penalty cost to the vendor equivalence to this extra holding 
cost. Again, if the delivery lot reaches after the upper limit of the de
livery tolerance period, then the vendor will be responsible for paying a 
penalty cost to the buyer. Here, this type of penalty cost is termed as late 
delivery penalty cost which is equivalent to the buyer’s loss of market 
goodwill and opportunity loss for unable to sell the product during this 
late period. The main goal of the research work is to determine the 
optimal values of the replenishment lot size, reorder point, number of 
shipments for minimizing the integrated expected cost under the envi
ronment of generalized lead time distribution of delivery to improve the 
supply chain performance. 

The entire paper is organized into seven sections. Section 1 carries 
the introduction part. The notation and assumptions of this study are 
stated in Section 2. Section 3 describes the general model while Section 4 
illustrates the solution procedure. Numerical results are provided in 
Section 5 and sensitivity analyses are carried out in Section 6. Section 7 
presents the conclusion of the whole study. 

2. Notation and assumptions 

The notation and assumptions used in the present paper to develop 
the model are as follows. 
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2.1. Notation 

The notation used to describe the model is as follows:  

(a) Common notation   

D Annual demand (units/year). 
τ  Length of lead time to deliver the replenishment lot (year). 
f(τ) The probability density function for the lead time τ.
L  Upper bound or maximum length of the lead time (year) after placing an order. 
l  Lower bound or minimum length of the lead time (year) after placing an order. 
dE  Early delivery tolerance factor of the buyer, where 0 < dE < 1.
dL  Late delivery tolerance factor of the buyer, where dL > 1.
tE  Lower limit or minimum delivery tolerance period (year) after placing an 

order, where tE > l.  
tF  Upper limit or maximum delivery tolerance period (year) after placing an 

order, where tF < L.     

(b) Notation for the vendor   

m The nonlinearity factor, 0 < m < 1.  
Cv

V  Set up cost for the vendor ($/setup). 
Cv

H  Stock holding cost for the vendor ($/unit/year). 
Cv

E  Early delivery penalty cost of the vendor if the delivery lot arrives before the 
delivery tolerance period of the buyer ($/unit/year). 

Cv
F  Late delivery penalty cost charged to the vendor if the delivery lot arrives 

after the delivery tolerance period of the buyer ($/unit/year). 
EACV  The expected cost of the vendor ($/year).    

(c) Notation for the buyers   

Cb
0  Ordering cost for the buyer ($/order). 

Cb
h  Stock holding cost for the buyer ($/unit/year). 

Cb
b  Backlogging cost for the buyer ($/unit/year). 

T  Cycle time of the buyer (year). 
EACB  The expected cost of the buyer ($/year).  

(d) Decision variables  
Q  The order lot size for the buyer (units/order).
R  Reorder point of the buyer (units). 
n  The number of deliveries from the vendor to the buyer in a replenishment 

cycle of the vendor. 
EACI  The integrated expected cost function ($/year), where EACI = EACI(Q,R, n).   

2.2. Assumptions 

The assumptions used to describe the system under consideration are 
as follows:  

(1) The supply chain system consists of a single vendor and a single 
buyer.  

(2) Demand of product is deterministic and known.  
(3) The vendor produces the ordered lot nQ and delivers them into n 

number of shipments of fixed lot-size Q.  
(4) Lead time to replenish vendor’s warehouse is zero.  
(5) Lead time to replenish buyer’s order is stochastic in nature.  
(6) The appropriate inventory level is not permitted to fall below the 

reorder point just after a replenishment occurs (see Fig. 3). There 
is one outstanding order.  

(7) The buyer provides a delivery tolerance range [tE, tF ] to the 
vendor, where tE and tF indicate the length of lower and upper 
delivery tolerance periods after placing an order respectively (see 
Fig. 1 and Fig. 3). 

There is an agreement between the vendor and the buyer that if the 
replenishment lot arrives before the lower delivery tolerance period tE of 
the contracted delivery tolerance range [tE, tF ], then the buyer charges a 
penalty cost termed as early delivery penalty cost to the vendor which will 
be equivalent to the excessive holding cost that the buyer has to bear for 
storing the lot for an extra time. Generally, holding cost increases with 
stock and time. Therefore, the early delivery penalty cost is considered as a 
function of ordered lot size and the extra time-span before tE. This 
additional cost is assessed to the vendor and it does not affect the buyer 
[see Theorem 1]. Again, it is assumed that if the delivery lot arrives to 

Table 1 
Contribution of different authors in the related field.  

Author (s) Supply chain Safety stock/reorder point Generalized lead time Shortage Penalty cost 

Early delivery Late delivery 

Ng et al. (2001) ✓ ✓  ✓   
Pan and Yang (2002) ✓ ✓     
Ouyang et al. (2004) ✓ ✓  ✓   
Hoque and Goyal (2006) ✓ ✓     
Lee et al. (2007) ✓ ✓  ✓   
Guiffrida and Jaber (2008) ✓    Linear Linear 
Hsu and Huang (2009) ✓ ✓  ✓   
Li et al. (2012) ✓ ✓     
Glock (2012) ✓ ✓  ✓   
Das Roy, Sana, and Chaudhuri (2012) ✓   ✓   
Zhou et al. (2012) ✓ ✓  ✓   
Bushuev and Guiffrida (2012) ✓    Linear Linear 
Braglia et al. (2014) ✓ ✓  ✓   
Yi and Sarker (2014) ✓ ✓  ✓   
Zhu (2015) ✓     Linear 
Lin (2016) ✓ ✓  ✓   
Hossain et al. (2017) ✓ ✓ ✓ ✓  Linear 
Bushuev (2018) ✓    Linear Linear 
San-Jose et al. (2019)  ✓  ✓   
Das Roy and Sana (2020) ✓ ✓  ✓   
Das Roy and Sana (2021) ✓ ✓  ✓   
Present paper ✓ ✓ ✓ ✓ Nonlinear Nonlinear  
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the buyer premises after the upper bound (tF) of the delivery tolerance 
range [tE,tF ], then the vendor has to pay a penalty cost to the buyer as the 
buyer loses his potential profit during this time-span. This penalty cost is 
termed as late delivery penalty cost and is equivalent to the sum of 
goodwill loss and opportunity loss. Now, the loss of market goodwill and 
opportunity loss increases with an increase in the number of units un
able to sell during the late period. Therefore, the late delivery penalty cost 
is assumed as a function of ordered lot size and the time-span after tF. 
This penalty cost also affects the vendor but not the buyer [see Theorem 
1]. Clearly, if the delivery lot arrives within the delivery tolerance pe
riods, then the vendor does not face any penalty cost.  

(8) The two distinct delivery tolerance periods tE and tF are used as 
delivery tolerance thresholds to obtain the delivery tolerance 
range in terms of reordering time.  

(9) Shortages are permitted at the buyer’s level [see Roy et al. 
(2010), Das Roy, Sana, and Chaudhuri (2011a, b), Glock (2012), 
Das Roy and Sana (2017), Hossain et al. (2017)]. If they occur, 
then they are completely backorder in the next ordering cycle. 
The vendor does not face any stock-out situation to deliver the 
replenishment lot to the buyer because of the vendor’s zero lead- 
time replenishment.  

(10) The system runs under a fixed time horizon, say T, that repeats 
itself over time to keep the continuity of operations. 

Unless the parties are cooperative, the system cannot work well and, 
in our opinion, they must do it for mutual benefits—the vendor is ex
pected to comply more tolerantly with the manufacturer/seller to earn 
goodwill and to keep the active business deal. In order to material such 
an agreement, the manufacturer/seller must have access to the vendor’s 

Fig. 1. Inventory level of the vendor and buyer over time.  
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transportation data or it may collect these data at their own initiative as 
to the expected lower and upper delivery tolerance periods tE and tF and 
their corresponding to penalty costs so that they can mutually plan to 
work in an agreeable optimal arrangement. 

3. The general model 

In this section, the model is described and framed mathematically. 

3.1. The model description 

It will be most cost-effective if the vendor optimizes its own in
ventory replenishment because if the vendor optimizes its own in
ventory replenishment, it does consider its own interests first leaving 
aside the other’s interest for minimizing the vendor’s cost most. Hence, 
the vendor’s cost will be minimized independently benefitting himself 
under this assumption. Also, if the vendor produces nQ units and ships 
only Q units to a buyer into n times, then the vendor can save his/her 
expensive setup cost. On the other hand, if he has to consider other’s/ 
buyer’s interest, he must incorporate the associated costs of the buyer as 
well under a common or joint model. Thus, the joint cost model will 
have theoretically a tradeoff between the costs of both vendor and 
buyer, and obviously the joint cost will be minimized at mutually agreed 
order quantity. It may be worth mentioning that many previous works 
also assumed such a situation [see Golhar and Sarker (1992), Sarker and 
Parija (1996), Hsu and Huang (2009), Yu et al. (2011), Das Roy, Sana, 
and Chaudhuri (2012), and Lin (2013)]. 

Suppose there is an agreement between the vendor and the buyer 
that the vendor will deliver the whole quantity nQ into n shipments of lot 
size Q to the buyer in a replenishment cycle. The buyer may not want to 
receive the replenishment lot immediately or in a very short time gap 
after reordering it because if the reordered lot arrives to the buyer’s 
premises too early before the complete consumption of on-hand stock, 
then this excess stock will increase the holding cost at the buyer’s side. 
Again, the buyer prefers to allow a stock-out situation for a short time 
period, but not for too long period in order to minimize the inventory 
cost or potential customer loss (i.e., profit loss). To meet his purposes, 
the buyer offers a delivery tolerance range [tE,tF] to the vendor. If a 
delivery lot reaches within this interval of time no penalty cost is 
imposed to the vendor, but if the replenishment lot arrives beyond the 
aforesaid tolerance range, then a penalty cost is charged to the vendor. If 
shortage takes place, the pending demand of the stock-out period is 
completely backlogged in the next ordering cycle of the buyer. Whether 
the buyer wants or not, evidently it is strictly dependent on what the 
optimal policy should be. The correct concept would be that the buyer 
does not want to implement a policy that is not optimal for her/him. It 
may also be possible that the optimal policy may result in a “high” 
probably of receiving a late delivery whether any party likes or not. In 
other words, all depends on the cost parameters and mutual agreement. 

3.2. Mathematical formulation 

Let us suppose that D is the demand rate and R is the reordering point 
of the buyer. So, RD is the reorder time that is the time during which the 
on-hand stock is fully consumed. The replenishment lot size on each 
replenishment cycle of the buyer is Q. In each of the replenishment 
cycle, when the delivery lot arrives at the buyer’s premises the buyer’s 
inventory reaches the maximum level (S). The lead time τ to replenish 
the buyer’s order is assumed to be stochastic in nature. Let it follows a 
known probability distribution within a specified range [l,L]. Two situ
ations may arise depending on the length of the upper bound L of the 
lead time τ. Either L > R/D or L ≤ R/D. If L ≤ R/D, then shortages never 
take place at the buyer’s facility which contradicts our Assumption 9. 
Thus, the valid condition for the proposed model is L > R/D. Now, 
whatever be the length of lead time τ, there must be some time that is 

elapsed between the events “the order is placed” and “the order has 
arrived”. During this period, the order is outstanding. Since only a single 
order is placed at reorder point and the appropriate inventory level is 
not allowed to be lower than the reorder level just after the arrival of a 
replenishment order, so, at most one order will be outstanding at any 
time [see Cakanyildirim et al. (2000), p. 218]. The buyer offers a 
delivery tolerance range beyond which a penalty cost is assessed to the 
vendor. Buyer’s allowable delivery tolerance range is [tE, tF], where 
tE = dER

D ,0 < dE < 1, l < tE < R/D and tF = dLR
D ,dL > 1,R/D < tF < L. The 

inventory level of the vendor and the buyer over time is shown in Fig. 1. 
In general, 0 ≤ dE ≤ 1, l ≤ tE ≤ R/D,dL ≥ 1,R/D ≤ tF ≤ L. In conser

vative systems, there may be some pessimistic buyers who will like to 
receive the ordered lots as early as possible. So that they do not impose 
any early delivery tolerance limits. In such case, dE = 0 and hence tE =

0. Again, there may be some buyers who do not wish to take the burden 
of over-stocking and so they impose the early delivery tolerance factor 
dE = 1 which implies tE = R/D i.e., tE is equal to the time when the 
on-hand inventory becomes zero. If tE = R/D, we have l < tE = R/D <

tF < L by assumption. Since the lead time is stochastic, the replenish
ment may arrive at any time in [l, L], and hence even after R⁄D, which 
means that the replenishment is not certainly early. If tE = l i.e., if the 
earliest delivery tolerance range is equal to the lower bound of delivery 
lead time τ, then the case of early delivery penalty cost will never take 
place. On the other hand, the buyer’s holding cost increases signifi
cantly. As a result, his expected cost is also increased significantly which 
is not desired. Sometimes the buyer does not permit shortages; in such a 
situation, dF = 1 and hence tF = R/D. That means, if the order reaches 
after time R

D
, i.e., if shortages take place, then a penalty cost is charged to 

the vendor. Also, there may be some optimistic buyers who allow 
shortages for a short time span. If tF = L, i.e., if the latest delivery time is 
equal to the upper bound of the delivery tolerance range of lead time τ, 
then the buyer’s backlogging cost becomes higher and consequently, his 
expected cost also becomes higher. All the cases mentioned above, do 
not go well with this model and they are not suitable to make the 
model tangible as well. The strict inequalities 0 < dE < 1; l < tE < R

D; 
dL > 1; R/D < tF < L provide an acceptable latitude for early or late 
delivery of ordered lots to the buyer, with the early or late delivery 
penalty cost being assessed to the vendor to improve delivery perfor
mance in a supply chain. An individual and integrated costs of the 
vendor and the buyer are discussed below. 

3.2.1. Vendor’s individual cost 
The vendor delivers the whole contract amount nQ into n lots each of 

size Q (see Fig. 1 and Fig. 2). Clearly, the single replenishment cycle of 
the vendor is equal to the n replenishment cycles of the buyer. The cycle 
time of the vendor = nQ

D and the costs relevant to the vendor’s cycle are: 

set up cost = Cv
VD

nQ and holding cost = Cv
H(n− 1)Q

2 . 
Penalty cost: The vendor must face two types of nonlinear penalty 

costs; Type I (early delivery penalty cost) and Type II (late delivery 
penalty cost) if he delivers the ordered lot beyond the buyer’s delivery 

Fig. 2. Vendor’s inventory level [see for reference Hossain et al. (2017)].  
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tolerance range [tE, tF ]. The early and late delivery penalty costs are 
defined as follows. 

PC =

{
Cv

EQm(tE − τ), τ < tE, 0 < m < 1
Cv

FQm(τ − tF), τ > tF, 0 < m < 1  

where the nonlinearity factor m indicates the elasticity of the penalty 
costs. Here, in both cases (early and late delivery), the penalty costs are 
considered as a product of Qm, where 0 < m < 1 and a linear function of 
lead time τ. Therefore, the penalty costs are nonlinear in nature, where 
Cv

E and Cv
F are the unit penalty costs for early and late delivery, respec

tively. 
If m = 0, then the penalty costs become linear functions of lead time 

(τ). If m < 0, then the penalty costs will be too small which are negli
gible. So, if m > 0, then the penalty costs become the nonlinear function 
of order lot size (Q) and lead time (τ). Again, if m = 1, then also penalty 
costs become nonlinear as there exist a term that is the product of Q and 
τ. Now, if m ≥ 1, then the penalty costs become nonlinear but they will 

be significantly high that may not be possible in any supply chain 
collaboration. Therefore, the valid range for the parameter m is 
0 < m < 1. 

These two types of penalty costs are discussed below. 
(i) Type-I: Early delivery penalty cost 
If l ≤ τ < tE, i.e., if the ordered lot reaches the buyer’s premises 

before the lower delivery tolerance period tE, then the vendor has to face 
a penalty cost at a rate $Cv

E/unit/year for such an early delivery. Thus, 
the expected penalty cost assessed to the vendor for arriving delivery lot 
before tE amounts to 

EPE = Cv
EQm

∫ tE

l
(tE − τ)f (τ)dτ.

(ii) Type-II: Late delivery penalty cost 
If tF < τ ≤ L, i.e., if the delivery lot reaches the buyer’s facility after 

the upper delivery tolerance period tF, then the vendor must pay a 
penalty cost at a rate $Cv

F/unit/year. Thus, the expected penalty cost for 
such a late delivery amount to 

EPF = Cv
FQm

∫ L

tF
(τ − tF)f (τ)dτ 

Now, the expected total penalty cost of the vendor is 

EPC = Qm
[

Cv
E

∫ tE

l
(tE − τ)f (τ)dτ+Cv

F

∫ L

tF
(τ − tF)f (τ)dτ

]

The expected cost of the vendor is   

3.2.2. Buyer’s individual cost 
The buyer receives the whole contract amount into n lots each of size 

Q. The order may arrive any time before the occurrence of shortages or 
at the time when the on-hand stock is completely absorbed or after the 
occurrence of shortages. If it arrives before the stock-out situation, then 
the maximum level of inventory will be S = Q + (R − Dτ). If it reaches 
after the stock-out situation, then also S = Q − (Dτ − R) = Q + R − Dτ. 
Also, the delivery lot may reach within or beyond the delivery tolerance 
range [tE, tF ]. The behavior of the buyer’s inventory is shown in Fig. 3. 

Fig. 3. Buyer’s inventory level.  

EACV(Q, n) =
Cv

V D
nQ

+
Cv

H(n − 1)Q
2

+Qm
[

Cv
E

∫ tE

l
(tE − τ)f (τ)dτ+Cv

F

∫ L

tF
(τ − tF)f (τ)dτ

]

. (1)   
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The cost relevant to the buyer’s cycle is ordering cost =
Cb

0D
Q . 

The actual expected average inventory of the buyer is = the expected 
average inventory before and on the reordering point + the expected 
average inventory after the reordering point. In most of the inventory 
studies, researchers have ignored the expected average inventory before 
the reordering point. They have calculated only the expected average 
inventory after the reordering point which is not an appropriate way as 
it does not give the correct result. Therefore, in this paper, the on-hand 
inventory at the buyer’s facility is calculated into two parts. Part-I: on- 
hand inventory before and on the reordering point and Part-II: on-hand 
inventory after the reordering point. 

3.2.2.1. Part-I: on-hand inventory before and on the reordering point. The 
on-hand inventory per replenishment cycle before and on the reordering 
point is 

I0 =
1
2
(T − τ).(S − R)+R(T − τ) = 1

2D
[
(Q − Dτ)2

+ 2R(Q − Dτ)
]
.

Thus, the expected holding cost before and on the reordering point 
for D/Q cycles is 

EH0 =
Cb

hD
Q

∫ L

l

1
2D

[
(Q − Dτ)2

+ 2R(Q − Dτ)
]
f (τ)dτ. (2)  

3.2.2.2. Part-II: on-hand inventory after the reordering point. As τ varies, 
the delivery lot may arrive any time after reordering it. It may arrive 
before or on the reordering time R/D or after it. So, there may arise any 
one of the two cases. (a) Case 1: τ ≤ R/D or (b) Case 2: τ > R/D. 

(a) Case 1: τ ≤ R
D 

In this case, shortages do not occur. Here, the amount of on-hand 
inventory depends on the length of the lead time. According to the 
arrival of replenishment order at buyer’s premises the following two 
sub-cases may arise. 

(i) Sub-case 1.1: l < τ ≤ tE 
In this sub-case, the delivery lot reaches to buyer’s premises before or 

at tE of the buyer’s delivery tolerance range [tE, tF ]. So, the on-hand in
ventory per replenishment cycle during the lead time τ is I1 = 1

2 Dτ.τ +

τ(R − Dτ) = τ(R − Dτ
2 ). The expected holding cost in this sub-case during 

the lead time τ for D/Q cycles is 

EH1 =
Cb

hD
Q

∫ tE

l
τ
(

R −
Dτ
2

)

f (τ)dτ. (3) 

(ii) Sub-case 1.2: tE < τ ≤ R/D 
Here, the delivery lot reaches to buyer’s facility after the time tE. So, 

the on-hand stock per replenishment cycle during the lead time τ is I2 =

τ(R − Dτ
2 ). The expected holding cost in this sub-case during the lead 

time τ for D/Q cycles is 

EH2 =
Cb

hD
Q

∫ R
D

tE
τ
(

R −
Dτ
2

)

f (τ)dτ. (4) 

(b) Case 2: τ > R/D 
In this case, shortages take place. The pending demand of the stock- 

out period is completely backlogged in the next replenishment. The on- 
hand stock per replenishment cycle in this case during the lead time τ is 
I3 = 1

2.
R
D.R = R2

2D. The expected holding cost in this case during the lead 
time τ for D/Q cycles is 

EH3 =
Cb

hD
Q

∫ L

R
D

R2

2D
f (τ)dτ. (5) 

The amount short per replenishment cycle is = 1
2

(

τ − R
D

)

(Dτ − R) =

1
2D(Dτ − R)2. So, the expected backlogging cost in D/Q cycles is 

EB =
Cb

b

2Q

∫ L

R
D

(Dτ − R)2f (τ)dτ. (6) 

Now, the expected cost of the buyer is the combination of ordering 
cost, all holding costs including the sub-cases and backlogging cost 
while he/she takes his/her decision independently. Thus, the expected 
cost of the buyer can be written as 

EACB(Q,R) =
Cb

0D
Q

+
Cb

hD
Q

∫ L

l

1
2D

[
(Q − Dτ)2

+ 2R(Q − Dτ)
]
f (τ)dτ

+
Cb

hD
Q

∫ tE

l
τ
(

R −
Dτ
2

)

f (τ)dτ + Cb
hD
Q

∫ R
D

tE
τ
(

R −
Dτ
2

)

f (τ)dτ

+
Cb

hD
Q

∫ L

R
D

R2

2D
f (τ)dτ + Cb

b

2Q

∫ L

R
D

(Dτ − R)2f (τ)dτ.

(7) 

Theorem 1. If the delivery lot reaches beyond the delivery toler
ance window [tE, tF], then the penalty cost charged to the vendor affects 
the expected cost of the vendor but not the buyer. 

Proof. In case of early or late delivery, the vendor must pay the penalty 
cost to the buyer. Let us assume that the expected total penalty cost to be 
EPCpenalty = EPC. Suppose the vendor’s other cost is EAVother. So, the 
vendor’s expected total cost incurred after the penalty assessment is 

EACvendor = EACV = EAVother +EPCpenalty (8) 

Now, this penalty cost, EPCpenalty, is paid to the buyer whose other 
cost is EABother = EACB, but this penalty cost EPCpenalty, once paid by the 
vendor, is a gain to the buyer, meaning that buyer’s cost is now reduced 
(because of the gain) by this amount of penalty cost. Hence, the resulting 
buyer’s cost is EACbuyer = EABother − EPCpenalty. 

(i) Case I: Early delivery 
If the delivery lot reaches before the lower limit of the delivery 

tolerance range, then the buyer has to bear an extra holding cost for 
keeping the lot an excess time before the delivery time window. This 
extra cost can be considered as a loss to the buyer i.e., EABloss. For this 
reason, the buyer charges a penalty cost to the vendor or his represen
tative transportation agency which is equivalent to this extra cost, 
meaning EABloss ≡ EPCpenalty. 

(ii) Case II: Late delivery 
If the shipment is late, the buyer is suffering from loss of shortage of 

product/material during this late period, and the penalty cost assessed to the 
vendor or his representative transportation agency by the buyer is nothing 
but the equivalence of his market goodwill loss and opportunity lost for not 
selling the products during this time. This is the reason for charging the 
penalty cost, otherwise there is no justification for assessing such a cost. So, 
let this goodwill and opportunity loss by the buyer be EABloss. That is, 

EABloss ≡ EPCpenalty 

In either of the cases, this EABloss is a cost to the buyer and thus it 
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needs to be added to his expected total cost EACbuyer. Therefore, the 
buyer’s total cost becomes 

EACbuyer = EABother − EPCpenalty + EABloss
= EABother, since EPCpenalty = EABloss
= EACB.

(9) 

Thus, it is clear from Eqs. (8) and (9) that the penalty cost charged to 
the vendor affects the expected cost of the vendor but not the buyer. 
Hence the proof. 

3.2.3. The vendor-buyer integrated cost 
The integrated expected cost is the sum of the vendor’s and buyer’s 

individual costs which can be written as 

EACI =EACI(Q,R,n)

=EACV(Q,n)+EACB(Q,R)

=
D
Q

(

Cb
0+

Cv
V

n

)

+
Cv

H(n− 1)Q
2

+Qm
[

Cv
E

∫ tE

l
(tE − τ)f (τ)dτ+Cv

F

∫ L

tF
(τ − tF)f (τ)dτ

]

+Cb
h

∫ L

l

{(
Q
2
+

D2τ2

2Q
− Dτ

)

+R
(

1−
Dτ
Q

)}

f (τ)dτ

+
Cb

hD
Q

∫ R
D

l
τ
(

R−
Dτ
2

)

f (τ)dτ

+
1

2Q

∫ L

R
D

{
Cb

hR2+Cb
b(Dτ − R)2}f (τ)dτ

=Z(Q,R,n)+Qm

⎡

⎣Cv
E

∫ dE R
D

l

(
dER
D

− τ
)

f (τ)dτ+Cv
F

∫ L

dL R
D

(

τ − dLR
D

)

f (τ)dτ

⎤

⎦,

(10)  

where 

Z(Q,R,n)=
D
Q

(

Cb
0 +

Cv
V

n

)

+
Cv

H(n − 1)Q
2

+Cb
h

∫ L

l

{(
Q
2
+

D2τ2

2Q
− Dτ

)

+R
(

1 −
Dτ
Q

)}

f (τ)dτ

+
Cb

hD
Q

∫ R
D

l
τ
(

R −
Dτ
2

)

f (τ)dτ+ 1
2Q

∫ L

R
D

{
Cb

hR2 +Cb
b(Dτ − R)2 }f (τ)dτ.

So, the optimization problem is to minimize the integrated expected 
cost stated in Eq. (10) subject to the condition 

l < tE <
R
D

< tF < L  

4. The solution procedure 

To optimize the above integrated expected cost of the proposed 
supply chain model, the following theorems are to be followed. 

Theorem 2. If L > R/D, then the integrated expected cost function 
EACI is  

(i) strictly convex in n, for given Q and R,  
(ii) strictly convex in Q and R, for given n.  

Proof. (i) The second order partial derivative of Eq. (10) with respect 
to n is 

∂2EACI
∂n2 =

2DCv
V

Q2n3 > 0 ∀ Q and R.

Hence, EACI is strictly convex in n, for given Q and R.

(ii) The second order partial derivatives of Eq. (10) with respect to Q 
and R are  

∂2EACI
∂Q2 =

2D
Q3

(

Cb
0+

Cv
V

n

)

+

(
Cb

h+Cb
b

)

Q3

∫ L

R
D

(Dτ − R)2f (τ)dτ

+m(m− 1)Qm− 2

⎧
⎨

⎩
Cv

E

∫ dE R
D

l

(
dER
D

− τ
)

f (τ)dτ+Cv
F

∫ L

dL R
D

(

τ − dLR
D

)

f (τ)dτ

⎫
⎬

⎭

>0,∀Q,R.

and 

∂2EACI
∂Q∂R

= mQm− 1

⎧
⎨

⎩

Cv
EdE

D

∫ dE R
D

l
f (τ)dτ − Cv

FdL

D

∫ L

dL R
D

f (τ)dτ

⎫
⎬

⎭

−

(
Cb

h + Cb
b

)

Q2

∫ L

R
D

(R − Dτ)f (τ)dτ 

(i) Q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D
(

Cb
0 +

Cv
V

n

)

+
(
Cb

h + Cb
b

) ∫ L
R
D
(Dτ − R)2f (τ)dτ

Cv
H(n − 1) + Cb

h

∫ L
l f (τ)dτ + 2mQ

m− 1

⎧
⎨

⎩
Cv

E

∫ dE R
D

l

(
dER
D − τ

)

f (τ)dτ + Cv
F

∫ L
dL R

D

(

τ − dLR
D

)

f (τ)dτ

⎫
⎬

⎭

√
√
√
√
√
√
√
√
√
√

(11)   

∂2EACI
∂R2 =

Qm

D2

{

Cv
EdE

2f
(

dER
D

)

+Cv
FdL

2f
(

dLR
D

)}

+

(
Cb

h + Cb
b

)

Q

∫ L

R
D

f (τ)dτ > 0, ∀ Q,R.
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For given n, the determinant of the Hessian matrix H =
⎛

⎜
⎜
⎜
⎜
⎝

∂2EACI
∂Q2

∂2EACI
∂Q∂R

∂2EACI
∂R∂Q

∂2EACI
∂R2

⎞

⎟
⎟
⎟
⎟
⎠

is 

|H| =

(
∂2EACI

∂Q2

)(
∂2EACI

∂R2

)

−

(
∂2EACI
∂Q∂R

)2 

Now, to ensure the convexity of EACI, the Hessian matrix H has to be 
positive definite and it happens if |H| > 0 i.e., if 
(

∂2EACI
∂Q2

)(
∂2EACI

∂R2

)

−

(
∂2EACI
∂Q∂R

)2

> 0.

Since, |H| contains the stochastic variable τ and nonlinear terms, so it 
is difficult to prove |H| > 0 theoretically. Therefore, it is checked and 
verified numerically in numerical studies. 

Hence the proof. 

Theorem 3. If Theorem 2 holds good, then the optimal values of Q,R 
and n can be obtained from the following equations.  

(ii) Qm+1

⎧
⎨

⎩
Cv

EdE

∫ dE R
D

l
f (τ)dτ− Cv

FdL

∫ L

dL R
D

f (τ)dτ

⎫
⎬

⎭

+Cb
hDQ

∫ L

l
f (τ)dτ+D

(
Cb

h+Cb
b

)
×

∫ L

R
D

(R− Dτ)f (τ)dτ=0, (12)   

(iii) n=
1
Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2DCv
V/Cv

H ,

√

where
⌊

1
Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2DCv
V/Cv

H

√ ⌋

≤n≤
⌈

1
Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2DCv
V/Cv

H

√ ⌉

,n≥1.

(13)  

Proof. For the stationary point (Q, R, n), equating ∂EACI
∂Q = 0, ∂EACI

∂R = 0 
and ∂EACI

∂n = 0. 
(i) Now, equating ∂EACI

∂Q = 0 implies 

−
1

2Q2

⎡

⎣2D
(

Cb
0 +

Cv
V

n

)

+
(
Cb

h + Cb
b

)
∫ L

R
D

(Dτ − R)2f (τ)dτ

⎤

⎦

+
Cv

H(n − 1)
2

+
Cb

h

2

∫ L

l
f (τ)dτ

+mQm− 1

⎧
⎨

⎩
Cv

E

∫ dE R
D

l

(
dER
D

− τ
)

f (τ)dτ + Cv
F

∫ L

dL R
D

(

τ − dLR
D

)

f (τ)dτ

⎫
⎬

⎭
= 0 

or,   

(ii) Equating ∂EACI
∂R = 0 implies 

Qm

⎧
⎨

⎩

Cv
EdE

D

∫ dE R
D

l
f (τ)dτ − Cv

FdL

D

∫ L

dL R
D

f (τ)dτ

⎫
⎬

⎭

+Cb
h

∫ L

l
f (τ)dτ+

(
Cb

h +Cb
b

)

Q

∫ L

R
D

(R− Dτ)f (τ)dτ=0 

or, 

Qm+1

⎧
⎨

⎩
Cv

EdE

∫ dE R
D

l
f (τ)dτ − Cv

FdL

∫ L

dL R
D

f (τ)dτ

⎫
⎬

⎭
+Cb

hDQ
∫ L

l
f (τ)dτ  

+D
(
Cb

h +Cb
b

)
∫ L

R
D

(R − Dτ)f (τ)dτ = 0 

(iii) Equating ∂EACI
∂n = 0 implies that − DCv

V
Q2n2 +

Cv
H
2 = 0 

or, 

n =
1
Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2DCv
V/Cv

H

√

As n indicates the number of deliveries from the vendor to the buyer, 
it must be a positive integer. Therefore, it will be within an integer range 
such that 
⌊

1
Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2DCv
V/Cv

H

√ ⌋

≤ n ≤

⌈
1
Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2DCv
V/Cv

H

√ ⌉

, n ≥ 1 

Hence the proof. 

Theorem 4. If m = 0 and Cv
E = 0, then the present model reduces to the 

model described by Hossain et al. (2017) as Case 1. 

Proof. If we substitute m = 0 and Cv
E = 0 in Eq. (10), then the 

expression for integrated expected cost turns into the expression stated 
by Hossain et al. (2017) in Case 1. So, the model discussed by Hossain 
et al. (2017) is a special case of the current model. The optimal values of 
delivery lot size and the number of deliveries are the same as stated by 
Hossain et al. (2017). 

The Equations in Theorem 3 are intrinsic in Q,R and n. So, it is 
impossible to derive a closed-form solution for each of them. Hence, to 
determine the optimal result, an iterative procedure is described using a 
flow chart in Fig. 4. Based on the flow chart (see Fig. 4), a solution al
gorithm for the iteration procedure is stated below. 

Solution Algorithm: Finding solutions for Q, R, and n 
Step 1. Initialize n = 1, EACI* = ∞, and the desired accuracy level ∊. 
Step 2. Evaluate Qn from Eq. (13). 
Step 3. Set Q0n = Qn.

Step 4. Utilize Q0nto calculate the value ofRn from Eq. (12). 
Step 5. Compute Qn from Eq. (11). 
Step 6. If |Q0n − Qn| < ∊, then go to Step 7. Else go to Step 3. 
Step 7. Find EACIn from Eq. (10). Print Qn,Rn, n and EACIn. 
Step 8. If EACIn < EACI*, then go to Step 9. Else go to Step 10. 
Step 9. Set n = n+1 and go to Step 2. 
Step 10. Set EACI* = EACIn,Q* = Qn,R* = Rn,n* = n.
Step 11. Print Q*,R*, n* and EACI*. 
Step 12. Stop. 

Q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D
(

Cb
0 +

Cv
V

n

)

+
(
Cb

h + Cb
b

) ∫ L
R
D
(Dτ − R)2f (τ)dτ

Cv
H(n − 1) + Cb

h

∫ L
l f (τ)dτ + 2mQ

m− 1

⎧
⎨

⎩
Cv

E

∫ dE R
D

l

(
dE R
D − τ

)

f (τ)dτ + Cv
F

∫ L
dLR

D

(

τ − dLR
D

)

f (τ)dτ

⎫
⎬

⎭

√
√
√
√
√
√
√
√
√
√
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Here, (Q*,R*, n*) is the global optimal solution and the optimal 
values of the lower and upper thresholds of the delivery tolerance range, 

i.e., tE* and tF*, are respectively obtained from the relations tE* = dER*

D ,

0 < dE < 1, tE* ∈

(

l, R*

D

)

and tF* = dLR*

D , dL > 1, tF* ∈

(
R*

D , L
)

In the following section, few numerical examples as experienced in 
industrial and/or business environments are provided to show the 
computations of the model in the field. 

5. Numerical results 

The following numerical examples are discussed to establish the 
general model. The parameter values are taken from the model of 
Hossain et al. (2017) except the new ones. 

Example 1. Uniformly distributed lead time. 
Let us consider a small-scale industry that produces toys for kids and 

supplies them to a retailer. The delivery lead time follows a uniform 
distribution. The parametric values of this system are: D = 1000toys/ 

Fig. 4. Flow chart of the iterative procedure for finding the optimal solution.  
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year, Cv
V = $400/setup, Cb

0 = $25/order, Cv
H = $4/toy/year, Cb

h =

$5/toy/year, Cb
b = $30/toy/year, Cv

E = $2500/toy/year, Cv
F =

$2190/toy/year, m = 0.4, dE = 0.75 (replenishment is made after 
passing 75% of the reorder time R/D), dL = 1.7 (replenishment is done 
after passing 170% of the reorder time R/D) and τ ∼ U[0,35] days. 

Now, the Solution Algorithm (see Section 4) or flow chart (see Fig. 4) 
is used to find the optimal solution. At first, n = 1 is substituted in Eq. 
(13) which yields Q01 = 447 toys/order. Then, this Q01 is utilized in Eq. 
(12) which results R1. Now, the insertion of this R1 in Eq. (11) yields a 
new value of Q1. After several iterations for calculating Q1 and R1 from 
Eqs. (11) and (12) as shown in the flowchart, finally the local optimal 
solution for n = 1 is obtained as Q1 = 399 toys/order and R1 = 42 toys. 
Thus, the integrated expected cost which is calculated from Eq. (10) is 
EACI1 = $2273/year. Similarly, the local optimal solution for n = 2 is 
determined as Q2 = 220 toys/order, R2 = 42 toys and the corresponding 
integrated expected cost EACI2 = $2197/year. Since EACI2 < EACI1, so 
the local optimal solution for n = 3 is calculated and is found as Q3 =

155 toys/order, R3 = 43 toys and EACI3 = $2208/year. Clearly, 
EACI2 < EACI3, so the iteration process stops. All the local optimal so
lutions are recorded in Table 2. 

Table 2 shows that n = 2 incurs lower integrated expected cost 
than for n = 1 and n = 3. So, the global optimal solution is found at 
the stationary point (Q2,R2) for n = 2. Hence, the global optimal 
solution is: Q* = 220 toys/order, R* = 42 toys, n* = 2 deliveries (ship

ments), and EACI* = $2197/year. Here, 
(

∂2EACI
∂Q2

)

(Q* ,R*)

= 0.0432013>0, 
(

∂2EACI
∂R2

)

(Q*,R*)

=0.787117>0 and the Hessian matrix  

H=

⎛

⎜
⎜
⎜
⎜
⎝

∂2EACI
∂Q2

∂2EACI
∂Q∂R

∂2EACI
∂R∂Q

∂2EACI
∂R2

⎞

⎟
⎟
⎟
⎟
⎠

is positive definite at (Q*,R*) since |H|(Q* ,R*) =

(
∂2EACI

∂Q2

)

(Q*,R*)

(
∂2EACI

∂R2

)

(Q* ,R*)

−

(
∂2EACI
∂Q∂R

)2

(Q* ,R*)

= 0.0339722>0. It is also 

checked that the optimality conditions at the local optimal solutions are 
satisfied. The optimal values of the length of lower and upper delivery 
tolerance periods are tE*=0.0315 year ≈ 11 days and tF*= 0.0714 year 
≈ 26 days respectively. Here, L=35 days which is greater than R*

D = 42
1000 

year ≅15 days. The CPU (Central Processing Unit) time needed for this 
calculation on Intel Core i3-2350M processor 2.30 GHz with 4 GB 
memory is 2.135 s (approximately). 

Example 2. Exponentially distributed lead time 
Suppose a company manufactures spare parts and supplies them to a 

retailer. The delivery lead time is exponentially distributed. The values 
of the parameters for this example are as follows: D = 1000parts/year, 
Cv

V = $50/setup, Cb
0 = $40/order, Cv

H = 1/part/year, Cb
h = $4/part/ 

year, Cb
b = $6/part/year, Cv

E = $2000/part/year, Cv
F = $1000/part/ 

year, m = 0.4, dE = 0.75 (replenishment is made after passing 75% of 
the reorder time R/D), and dL = 1.7 (replenishment is done after passing 
170% of the reorder time R/D). The lead time τ follows the probability 
density function f(τ) = 20e− 20τ with mean β = 1

20 year = 365
20 days ≈ 18 

days, L = 35 days and l = 0 day. 
As stated in the Solution Algorithm, the iteration procedure begins 

with n = 1 and calculates Q01 = 316 parts/order from Eq. (13). Then by 
the substitution of Q01 in Eq. (12) determines R1. Now Eqs. (11) and (12) 
are repeatedly used (see Fig. 4) to obtain the local optimal result Q1 =

182 parts/order and R1 = 30 parts for n = 1. Then, Eq. (10) yields 
EACI1 = $1088/year. Similarly, for n = 2, the local optimum values are 
found as Q2 = 143 parts/order, R2 = 30 parts and EACI2 = $1015/year. 
Here, EACI2 < EACI1. So, the process proceeds for n = 3. The local 
optimal solution for n = 3 is Q3 = 125 parts/order and R3 = 31 parts. 
Eq. (10) results EACI3 = $1020/year. Here EACI3 is higher than EACI2, 
so the iteration process ends. The local optimal results are recorded in 
Table 3. 

It is noted from Table 3 that the minimum integrated expected cost 
arises for n = 2. So, the global optimal solution is obtained at (Q2,R2) for 
n = 2. Hence, the global optimal solution is: Q* = 143 parts/order, 
R* = 30 parts, n* = 2 deliveries (shipments), and EACI* = $1015/year. 

Again, 
(

∂2EACI
∂Q2

)

(Q* ,R*)

= 0.0470798 > 0,
(

∂2EACI
∂R2

)

(Q* ,R*)

= 0.372987 > 0 

and the Hessian matrix H is positive definite at (Q*,R*) since |H|(Q* ,R*) =

0.0175333 > 0. Also, it is noted that the optimality conditions at the 
local optimal solutions for Example 2 are satisfied. The optimal values of 
tE* = 0.0225 year ≈ 8 days and tF* = 0.051 year ≈ 19 days. Here, L = 35 
days which is greater than R*

D = 30
1000 year ≅ 11 days. The CPU time noted 

for obtaining the results is 3.59 s (approximately). 
Example 3. Normally distributed lead time 
A steel manufacturing industry produces steel rolls with a certain 

gauge and supplies it to a buyer. The rolls are sold based on the weights 
of the rolls (i.e., the selling unit is in tonnage). The values of the system 
input data are: D = 120,000 tons/year, Cv

V = $1000/setup, Cb
0 =

$560/order, Cv
H = $1/ton/year, Cb

h = $1.25/ton/year, Cb
b = $1.5/ton/ 

year, Cv
E = $2500/ton/year, Cv

F = $2400/ton/year, dE = 0.75 (replen
ishment is made after passing 75% of the reorder time R/D), dL = 1.7 
(replenishment is done after passing 170% of the reorder time R/D), L =

35 days, l = 0 day, and m = 0.2. The delivery lead time follows a normal 
distribution with τ ∼ N[27, 122] days. 

Now, with the help of the flow chart which is shown in Fig. 4, at first 
Q01 = 15491 tons/order is computed from Eq. (13) by putting n = 1. 
Then this Q01 is used in Eq. (12) and obtained R1. Now Eqs. (11) and (12) 
are continuously used according to the flow chart to determine the local 
optimal solution for n = 1 i.e., Q1 = 29660 tons/order and R1 = 2871 
tons. Then, Eq. (10) results EACI1 = $10047/year. Similarly, for n = 2, 
the local optimal values are found as Q2 = 13689 tons/order, R2 = 5005 
tons and EACI2 = $16680/year. The iteration process terminates since 
EACI1 < EACI2. These local optimal outcomes are recorded in Table 4. 

Since, the integrated expected cost for n = 2 is higher than n = 1 
(see Table 4), so the global optimal solution is found at (Q1,R1) for 
n = 1. Hence, the global optimal solution is: Q* = 29660 tons/order, 
R* = 2871 tons, n* = 1 delivery (shipment), and the corresponding in

tegrated expected cost EACI* = $10047/year. Also, 
(

∂2EACI
∂Q2

)

(Q* ,R*)

=

Table 4 
The local optimal solutions for given values of n (Example 3).  

n (shipments)  Qn (tons)  Rn (tons)  EACIn ($/year)  

1 29,660 2871 10,047 
2 13,689 5005 16,680  

Table 3 
The local optimal solutions for given values of n (Example 2).  

n (shipments)  Qn (parts)  Rn (parts)  EACIn ($/year)  

1 182 30 1088 
2 143 30 1015 
3 125 31 1020  

Table 2 
The local optimal solutions for given values of n (Example 1).  

n (shipments)  Qn (toys)  Rn (toys)  EACIn ($/year)  

1 399 42 2273 
2 220 42 2197 
3 155 43 2208  
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0.000016 > 0,
(

∂2EACI
∂R2

)

(Q* ,R*)

= 0.000076 > 0 and the Hessian matrix H 

is positive definite at (Q*,R*) since |H|(Q* ,R*) = 1.15524× 10− 9 > 0. 
Also, it is found that the optimality conditions at the local optimal so
lutions are satisfied. The optimal values of tE* = 0.0179 year ≈ 7 days 
and tF* = 0.0407 year ≈ 15 days. Here, L = 35 days which is greater 
than R*

D = 2871
120000 year ≈ 9 days. The CPU time for calculation is found as 

8.468 s (approximately). 

6. Sensitivity analyses 

The sensitivity analyses of the optimal solutions for Examples 1, 2 
and 3 are performed by changing the values of the parameters D,Cv

V ,Cb
0,

Cv
H,Cb

h,C
b
b,C

v
E,Cv

F and m by − 50%, − 25%, +25% and +50% while the 
other parameters value remain unaltered. The effects of such changes on 
the optimal values of order lot size Q*, reorder point R* and the inte
grated expected cost EACI* for Examples 1, 2, and 3 are reported in 
Tables 5, 6 and 7, respectively. 

The scenarios observed from Tables 5–7 are as follows.  

• If the annual demand D increases, then the order lot size Q* and 
reorder point R* are increased. As a result, the integrated expected 
cost EACI* for Examples 1, 2, and 3 are also increased (see 
Tables 5–7).  

• With an increase in the set-up cost Cv
V, the order lot size Q* and the 

integrated expected cost EACI* increase but the reorder point R* 

decreases for Example 1, 2, and 3 (see Tables 5–7).  
• While buyer’s ordering cost Cb

0 increases, the values of Q* and EACI* 

increase significantly for Example 1, 2, and 3. The value of R* re
mains unaltered for Example 1 and 2 (see Tables 5 and 6) but de
creases for Example 3 with an increase in Cb

0 (see Table 7). 
• When the vendor’s holding cost Cv

H increases, the value of Q* de
creases, but EACI* increases while R* remains unchanged for 
Example 1 and 2 (see Tables 5 and 6) whereas in Example 3, Q*, R* 

and EACI* remain unaltered (see Table 7).  
• The values of Q* and R* are decreased and EACI* is increased with an 

increase in the value of buyer’s holding cost Cb
h for Example 1, 2, and 

3 (see Tables 5–7). 

Table 5 
Sensitivity analysis for Example 1 when n = 2 and τ is uniformly distributed.  

Parameters Parameters Values Q* (Toys)  R* (Toys)  EACI* ($/year)  

D  500 
750 
{1000} 
1250 
1500 

155 
189 
220* 
248 
274 

21 
32 
42* 
52 
63 

1572 
1910 
2197* 
2452 
2685 

Cv
V  200 

300 
{400} 
500 
600 

166 
195 
220* 
243 
264 

43 
42 
42* 
42 
42 

1680 
1957 
2197* 
2412 
2609 

Cb
0  12.5 

18.75 
{25} 
31.25 
37.5 

214 
217 
220* 
223 
226 

42 
42 
42* 
42 
42 

2139 
2168 
2197* 
2225 
2253 

Cv
H  2 

3 
{4} 
5 
6 

248 
233 
220* 
209 
200 

42 
42 
42* 
42 
42 

1963 
2083 
2197* 
2305 
2407 

Cb
h  2.5 

3.75 
{5} 
6.25 
7.5 

256 
236 
220* 
207 
197 

45 
43 
42* 
40 
39 

1908 
2059 
2197* 
2325 
2443 

Cb
b  15 

22.5 
{30} 
37.5 
45 

218 
219 
220* 
221 
222 

41 
41 
42* 
42 
43 

2178 
2188 
2197* 
2206 
2214 

Cv
E  1250 

1875 
{2500} 
3125 
3750 

222 
221 
220* 
219 
219 

46 
44 
42* 
40 
39 

2135 
2167 
2197* 
2224 
2250 

Cv
F  1095 

1642.5 
{2190} 
2737.5 
3285 

224 
222 
220* 
220 
219 

34 
39 
42* 
44 
46 

2153 
2180 
2197* 
2209 
2217 

m  0.2 
0.3 
{0.4} 
0.5 
0.6 

228 
225 
220* 
212 
199 

36 
40 
42* 
43 
44 

2079 
2124 
2197* 
2316 
2510 

Note: {}- the base row; * - the optimal solution. 

Table 6 
Sensitivity analysis for Example 2 when n = 2 and τ is exponentially distributed.  

Parameters Parameters 
values 

Q* (Spare 
parts)  

R* (Spare 
parts)  

EACI* 

($/year)  

D  500 
750 
{1000} 
1250 
1500 

97 
122 
143* 
163 
181 

16 
23 
30* 
36 
43 

744 
891 
1015* 
1124 
1224 

Cv
V  25 

37.5 
{50} 
62.5 
75 

129 
136 
143* 
149 
156 

31 
30 
30* 
30 
30 

923 
970 
1015* 
1057 
1098 

Cb
0  20 

30 
{40} 
50 
60 

121 
132 
143* 
153 
163 

30 
30 
30* 
30 
30 

864 
942 
1015* 
1082 
1145 

Cv
H  0.5 

0.75 
{1} 
1.25 
1.5 

149 
146 
{143} 
140 
138 

30 
30 
30* 
30 
30 

978 
997 
1015* 
1033 
1050 

Cb
h  2 

3 
{4} 
5 
6 

180 
158  
143* 

132 
124 

36 
33 
30* 
27 
24 

842 
935  
1015* 

1084 
1145 

Cb
b  3 

4.5 
{6} 
7.5 
9 

141 
142 
143* 
144 
145 

28 
29 
30* 
30 
31 

1000 
1008 
1015* 
1022 
1028 

Cv
E  1000 

1500 
{2000} 
2500 
3000 

145 
144 
143* 
143 
142 

36 
33 
30* 
27 
25 

975 
997 
1015* 
1030 
1043 

Cv
F  500 

750 
{1000} 
1250 
1500 

150 
146 
143* 
141 
140 

17 
24 
30* 
34 
37 

941 
984 
1015* 
1036 
1052 

m  0.2 
0.3 
{0.4} 
0.5 
0.6 

155 
150 
143* 
133 
119 

19 
25 
30* 
33 
36 

896 
945 
1015* 
1117 
1267 

Note: {}- the base row; * - the optimal solution. 
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• An increase in Cb
b increases the values of Q*, R* and EACI* for Ex

amples 1 and 2 (see Tables 5 and 6) while for Example 3, the value of 
Q* decreases but R* and EACI* are increased (see Table 7).  

• If the early delivery penalty cost Cv
E increases, then for Example 1 and 

2 (see Tables 5 and 6), Q* and R* decrease but EACI* increases 
whereas for Example 3, the values of Q* and EACI* decrease but R* 

increases (see Table 7). 
• In Example 1, 2, and 3, the reorder point R* and the integrated ex

pected cost EACI* are increased but the order lot size Q* is decreased 
when the late delivery penalty cost Cv

F is increased (see Tables 5–7).  
• The values of Q*,R* and EACI* are highly sensitive to m. When m 

increases, the value of Q* decreases but R* and EACI* increase 
significantly for Example 1, 2, and 3 (see Tables 5–7). 

7. Conclusions 

This study presents a viable cooperative agreement between two 
parties in a supply chain network for a single product. It determines a 
delivery policy under some conditions which are experienced in many 
industrial situations where the demand is constant and the delivery lead 
is stochastic in character. The system allows shortages that are 

completely backlogged. Moreover, two types of nonlinear penalty costs 
have been incorporated: early delivery penalty cost and late delivery pen
alty cost. The integrated expected cost of the entire supply chain is 
minimized to determine the optimal values of order quantity, reorder 
point, number of deliveries and the optimum integrated expected cost. 
Numerical examples are provided for three types of distribution of lead 
time: uniform, exponential and normal. Because of the generalization of 
the lead time distribution, it is also applicable for other types of distri
butions. The following conclusion may be drawn from this study.  

• Introduction of nonlinear penalty costs for early and late delivery 
increase the supply process reliability.  

• The concept of early delivery penalty cost makes a supply chain 
system more versatile. 

• An introduction of the delivery tolerance range increases the tangi
bility of the supply chain.  

• The distinct values of dE and dL make the model more practical and 
applicable.  

• The numerical study shows that this model is useful for small-scale as 
well as large-scale industries. 

Although the system cost of the proposed model is higher than 
Hossain et al. (2017) model, yet it is more effective to build a tangible 
coordinated supply chain between the vendor and the buyer. The 
nonlinear penalty costs for early and late delivery may influence the 
individual strategies of both the vendor and the buyer. The vendor will 
be compelled to be more cautious regarding the delivery timing since he 
alone must pay the penalty and the buyer will be able to make a balance 
between the holding and backlogging costs for minimizing his system 
cost. Consequently, the integrated expected cost will be reduced, and 
both of the parties will be benefited. The idea of this study is expected to 
improve the coordination and delivery performance in a supply chain 
system. The model is applicable in production houses and retail busi
nesses where the profit margin is dependent on both: the replenishment 
cycle and the lead time. 

The present work can be extended for a multi-stage supply chain 
network as well. Consideration of a single-vendor, multi-buyer or a 
multi-vendor, multi-buyer supply chain system including constant or 
different types of demand pattern may also be a further extension of this 
study. 
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