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1. Introduction

In this article, we present a testing procedure to compare attitudes of two sets of sub-
jects on a question, expressed through Likert-type scale data. In Likert-type scale,
respondents are asked to respond to a set of questions, referred to as items, according
to their strength of view in an ordinal scale in a questionnaire. Respondents’ attitudes
are typically differentiated on the basis of mean responses of the questionnaires in
Likert’s summated scale. Here, we consider comparison of two independent samples of
responses to a single Likert-type item obtained from possibly distinct populations.

Comparison of two sets of Likert-type scaled data has been subjected to study for the
past few decades. The null hypothesis was traditionally to as agreement between the
respondents, as for example in Agresti (1988). However, since in recent times the term
has assumed a more specialized meaning in the context of method comparison studies,
we merely refer to it as identicalness of the two response distributions. As a common
practice, the t-test or the Mann-Whitney test are commonly employed for testing the
hypothesis (see e.g. Boone and Boone (2012), Clason and Dormody (1994)). The ques-
tion of robustness of the tests have also been explored, in De Winter and Dodou
(2010), Meek, Ozgur, and Dunning (2007) for instance. However, the data being ordinal
in nature, the standard statistical assumptions for the t-test are not satisfied. For a gen-
eral discussion on methods for categorical data see Agresti (2002).

A standard assumption in dealing with Likert-type scale data is the existence of
underlying continuous latent distribution. Typically normality is assumed. More
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generally, the mechanism can be described as follows (Snell 1964): suppose we have
respondents belonging to two groups, and X and Y denote two latent continuous ran-
dom variables that represent their true opinions. Let us denote by xo < x; < - -+ < Xp41
and yp < y; < --- < yk41, respectively, the class boundaries of values of X and Y defin-
ing the categories. We may have either or both of x5, yy as —oo and Xki1, yrt1 as oo.
As X, Y are unobserved, two ordinal manifest random variables N = N(X) and M =
M(Y) are observed instead with N=1i if x; 1 <X <x; and M =i if y,, <Y <
yi» 1 <i<k+ 1. Here, we frame the alternative hypotheses of departure from identi-
calness of response distributions in the two populations in two ways, in terms of this
model and develop large-sample tests for both.

2. Description of the procedures

We assume F and G, the respective distribution functions of X and Y, both possess
strictly positive continuous densities within their range that we denote by f and g,
respectively. The choices of F and G are actually arbitrary to the extent of transform-
ation by sufficiently smooth functions. We shall find it convenient to work with ones
that lend themselves to plausibility of representing the alternate hypothesis as a location
shift, defined in the next subsection.

Departure from identical response distribution between two sets of subjects with respect
to their attitudes, as described by Agresti (1988) for instance, may occur in two ways: one,
if they have different perceptions for the meanings of different categories which may be
termed as “a priori” variation and the other is “a posteriori” which occurs when they inter-
pret the categories identically, but possess different opinions (Camparo 2013).

2.1. A model for “a posteriori” shift and a test

We are interested in testing if there is a general shift of attitudes of respondents in the
second group toward treating a particular item more positively, or negatively, than those
in the first group. This can be modeled as follows: consider the location shift problem

where Y£X + 0 for some 0, hence G(-) = F(- —0). Of course, we assume suitable
choices of F (and therefore G), after appropriate transformations if necessary, for applic-
ability of this paradigm. Under the null hypothesis, 0 =0 making G = F, when opinions
match in distribution. The class boundaries of the categories remain same for both X
and Y, that is, x;, = »;,i =0,1,2,...,k + 1 which translates to the fact the perception of
the meanings of the categories are equivalent for both the subjects. Our purpose is to
develop a test for Hy : 0 = 0 against H; : 0 # 0; or one-sided alternatives H, : 0 > 0 or
H;: 0 <0 on the basis of observations made on the ordinal variables. Here, 0 > 0
refers to respondents in the second group generally being inclined more favorably or
positively toward the opinion represented in the item and 0 < 0 the opposite.

We assume two independent samples of size n and m from the two groups, denoted
by (N1,N,,...,N,) and (My, M,, ..., M,,), respectively, are available where n and m are
sufficiently large to develop large-sample tests. Denote by fi » = > i, 1((N;) the num-
ber of observations for jth category for the sample drawn from the distribution of X
and g, = Y1, 1((M;) that for ¥, 1 <j<k-+1. Here, 1. stands for the indicator
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function. Also, we denote by F;, := SY_ fin and Gjn = SY_, g the cumulative jth
class frequencies for X and Y respectively; 1 <j <k +1.
Now,

(fisfas -+ fir1) ~ Multinomial(n; 7y, 7, ..., T ) and
(g1>8> > Qkt1) ~ Multinomial(m; d1, dy, ..., Og+1)

where 7; = F(xj) — F(xj—1) and 6; = G(x;) — G(xj_1) = F(xj — 0) — F(xj_; — 0) for j =

2, ...,k + 1. Note that under Hy, 9; = m; Vj.

First, we describe the use of large-sample properties of the maximum likelihood esti-
mator of 0 to test the hypothesis H,. As the k intermediate class boundaries are
unknown, we have k+1 unknown parameters: (0,x;,x,,...,xk) = (0,x), say. The log-
likelihood, arising from the product of two independent multinomial pmfs, is given by

k41 k1
1((0,x)) = ¢; + Zﬁlognj +c+ Zgjlogéj
=1 )

where ¢y, ¢, > 0.

Standard regularity conditions are given, for example, in Serfling (1980) or Ferguson
(1996), guaranteeing efficient and consistent asymptotic normality of the maximum like-
lihood estimator. We follow Ferguson (p. 121), specializing to the multi-
nomial situation:

a. The parametric space for (0,x) is open in RF,

b. 1((0,x)) has continuous partial derivatives in each component of (0,x) up to
second order,

c. all the second-order partial derivatives are bounded in absolute values by inte-
grable random variables in some neighborhood of the true value (0y,%o) of
the parameter,

d. the information matrix I, , = 1((6,x))) ) is positive definite at (6g,Xp),
) p

02
0(0,x)*
apart from identifiability of the parameter. To apply these conditions, we assume that f
is continuously differentiable.

Before proceeding further, it will be convenient to partition the (1+ k) x (1 + k)
information matrix in the following way:

- _ (in(0,x)  i12(0,x)
Imn = I mn(0,X) = (ilz(e,x) fzz(e’x)>

The likelihood equations 81(0 % — 0 and %};x) =0 fori=12,..k, yield

k+l k+1

S5 N ICEURCERDE

and

T Tyl

flx )[f f“]+f( ){%—g’“] —0,i=1,2..k
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respectively. An iterative procedure is needed to solve these equations, with each iter-
ation further consisting of two steps: successively updating estimates of 0
and x = (X1, X2, ..., Xk)-

The estimate of 0 for given xi,x,,...,x; for the first part of each step of iteration, as
well as, for the second part, those of the x;’s for given 0 can be obtained by the scoring

method:
021(9)_"Zg 1 9 (@)2
A~ J; aaz 5]? 20) |

o o =2]-210]

ket 1 8% 85;\

Z 5{5 8()2__<89>1
n @y

£ 5; \ 00

while the matrix .#,,(6,x) has entries

nf?(x;) [; +:} + mf?(x; — 0) 5 ] j=i
) ”f(xl)f(xl 1) mf(xl—ﬁ)f(xl 1_6 i1
ijj,22(0,x) = T 0; J
_ ”f(x;'zi(lxiﬂ) _mf(xi — ?ﬁxiﬂ - 6)) j—it1
0 otherwise

Also, the entries of the vector ij,(6,x) are given by

?l0,x)| fx10—0) = f(x;—0)  f(x—0) —f(x;-1 —0)
E[_ 000x; 1 __mf(xj_g)l - dj1 . 5; ] ]

forj=1,2,...,k.
Now, we can conclude from Serfling (1980) or Ferguson (1996) that the regularity
conditions imply, for the solution of the likelihood equations, the following:

M
(6 ,&1,562,...,%k)ﬁszH((H,xl,xz,. > Xk)s f '»)- Hence,

()N (0,1 ((0,%)))
as m,n — oo where i'V((0,x)) is the (1,1)th element of .7,,,, equaling

(in(0.x) — 112(0.%).75 (0.)i},(0.x)) " = (in2(0.x)) "

The Wald’s test for Hy: 0 =0 against the alternative H: 0 # 0 gives the rejection
region

M To/2
|0, ] -
V112

at asymptotic level o where i, = i112(0, %) is the MLE of ij;,(0,x) under H,.
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M N . . .
For computation of the estimates (0 ,X;,X,,...,xx) the following iterative procedure

~M,
can be followed. The sth iterative value of estimate 0 is given by the equation
al(6)

M,s—1 a0 |0:91\7:::71,x:)2$’1

myn
m,n m,n ~M,s—1
. ’ as—1
lll-z(gm,n ’Xm,n)

and that of the vector of class boundaries is obtained from

N P AM,s—1 _1,aMs—1
%, =X VIO, %I (0, %)

m,n m,n m,n m,n

where V = (0/0x,,0/0x3,...,0/0xx) is the gradient. The vector initial value for the
parameters can be taken as (0™°,x9,x9,...,x?). Iteration is to continue until the esti-
mates of 0 and x;,x,,...,xx converge. Alternatively, to simplify calculations, as per
Ferguson (1996, p. 138), the first-iterate can be used although the rate of convergence

to normality would likely be slower. A natural choice for initial estimate is 0 for 6%}’2

and accordingly, the MLE of x;s under Hy: Xj0 = F' (M)

n+m

In Appendix C, results of some simulations in terms of approximate size and power
for various choices of m and n when the underlying latent F is normal, are shown.

But joint estimation of (0,x;,x,,...,xx) involves cumbersome computations. Now, we
make an assumption that allows us both to obtain a convenient form of the information
matrix under Hy, and to carry out limit computations. This assumption is that m and
n— oo in such a way that  — 4 for some A€ (0,00). In that case, .J,, »(x,0) =
mA(x) under Hy. Like .#,, ,, A can be partitioned as

A= (e )

s 2
where Au(x) = S5 L (%],,) = S L (F(g) — f(5-1)) and Ap(x) s a kx 1

vector with jth element given as —f(x;) [f (’9+7‘Tj;f Gy) _f (xj)ji (xj’l)} for j=1,2,...,k

Ay (x) is a k x k matrix with (i,j)th element given as

(o) rsc) o=

A2 (x) = —G+1>M, j=i—1
0 otherwise

Now, under H,,

(vVm 0" m(Es — x0), Vim(Es — x2), o V(R — 28)) N (0, A7)

as m,n — oo and = — / > 0. Hence,

Jm (E)ﬁf’n) iN(o, A(H)(x))
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as m,n — oo and 7 — 4 >0 where A (x) = (A — AnALA,) T As AW (x) is
continuous function of x; for all j = 1,2,...,k, we can replace x by efficient estimates X,

~M R .
to obtain an efficient estimate of asymptotic variance of 0,, ,. The jth element of X, is
Xjo=F" <%) which is MLE of x; under H,.

Now we can use

m i,
A (x4)

(D)

m,n

as a test statistic to test H,,. T,S:,)n is asymptotically standard normal under H, and hence

the rejection region for the test against two sided alternative H : 0 # 0 is |T,<nl))n| > Ty
at asymptotic level a.

2.2. Testing for an “a priori” difference model

In this section, we let the class boundaries for the second group differ by 0 from those
of the first group. This represents an equal measure of difference in the perception of
categories between the groups when 0 # 0. Here, although it is natural to assume the
equality of G and F, much of the analysis can be done even without assuming this. So,
let (xo,x1,....%k+1) and (¥o,1,....¥k+1) be the class boundaries of categories for the
latent variables X and Y, respectively, so that y;, = x; — 0 for i = 1,...,k. Our aim is to
develop a test procedure, as m and # both increase unboundedly, for the null hypothesis
the two groups of subjects to have same perception about the categories, which again
takes the form Hy : 0 = 0.

A computationally convenient method of estimating 0 is using the marginal estimates
of class boundaries of the two populations. Following Bhattacharya and Sengupta

(2013L1etxﬁnzzp—1(ﬂﬂ

p ) and y, , = G! (%) denote estimates of class boundaries y;

and xj, respectively, for i=1,2,...,k. Then the asymptotic distributions of X, :=
(X1, X2, s - X ) and ¥, = D1 V2, o ...,j/k’m)/ are both k-variate normal; specifically,
X, ~ AN(x, 13,) and y,, ~ AN(y, LZ,) where 2, := ((1;)) and Z, := ((7};)) with

, GO = G0y)

and 1, =71

_W i Ji_W, i<j.

For details, refer to Bhattacharya and Sengupta (2013). In fact, 13, and 13, are the

. . . . N N X . .
respective dispersion matrices of X, and y,,; and (?” > has asymptotically a 2k-variate

m

. . . . . <« » X « 3 . »
normal distribution with asymptotic “mean” parameter < ) and “dispersion

1
-%y Cov(x,Y,,
matrix | #

1
—2
mY
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An easy to compute estimate of 0 is given by

k
§ yzm xl”

Now the asymptotic means of the components of X, and y, are y; and x; for j =

1,2,....,k. Thus, the asymptotic mean of the estimator is given by E(ij)n) ~ 0, while

»|»~

the asymptotic variance is

- (2
The estimator 9;’),1 is consistent for the shift 6 as n,m — o0o. Also note as a conse-

~(2
quence of the Cramer-Wold device, that 6( ) , converges to N(0,a7, ,(0)) in distribution
5@
as n,m — oo. Hence, (Z"‘" 9 follows asymptotically a standard normal distribution.

Here again 7;; and ‘E;j contain the unknown class boundaries.

Let us denote the estimates of 7; by 7;;, namely

L FGan) (1~ Fl)
/ f(&i,n>f(55j,n)

~ P ~ P . . . s .
Now as X; ,—x; we have 7;—t; for all i # j owing to continuity of F and f at x; Vj.

Similarly, the analogous statement: %;-jiréj Vi,j, holds.
It follows that the estimate of o7, ,(0) defined as

2
is strongly consistent in the sense that ;” E also converges almost surely to 1 as

2)
0, ,—0
(&m "( ) preserves the asymptotlc IlOI'l’l’lallty

m,n — oo and by Slutsky’s theorem, T}, , =
Note that if G=F, then under Hy, T}, , reduces to

5@
@ _ (Oh,n)
G n(0)

where 2, (0) =5 3°% ZJILI (£ +1)%; estimates o7, ,(0) = kI—ZZ:.‘:l Z]I.‘Zl (E+1)1;. So

consists of rejecting Hy

in this case, a level o asymptotic test based on Tm n .:9 n
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against H; if ‘Tij)n

> 1,5, the upper 1005 % cutoff point of the standard normal dis-

tribution. For one-sided alternatives, one-sided tests can be carried out.

However, the results of the simulation, as shown in the table in Appendix C, suggest
that convergence to standard normality is slow, in the sense that with (50, 100) and
(100, 50) as choices for (m, n), their simulated sizes overshoot the 5% level significantly
in most scenarios, when F = ®.

A natural idea to explore at this stage would be, if instead of the simple average of
Vim — Xini=12,...k a weighted average may or may not perform better. Let us fix

the weights w;,i = 1,2, ..., k satisfying w; > 0 and ZLI w; > 0; and define

S (2,w) 1 & .
O :flwi;wi(yi,m—xi,n)

with approximate variance
k__k
1 1 1
I~ \2 E : E :Wiwj<_+_>7ij
Qow) == m.n

where 1; = %}&Sﬂ if i <j. The table in Appendix A shows the comparison of the

~ (2, ~(2
approximate variances of an, :,V ) with 95,1,),1 under different choice of weights for the nor-

mal model. It appears from the table that weights w; proportional to /i(k — i + 1) yield
smaller variance than uniform weights in most situations for this model.

3. Asymptotic relative efficiency

We now compare, assuming m and n grow approximately proportionately, both the first
and second tests with two-sample ¢-test and Mann-Whitney test with regard to asymp-
totic relative efficiency following Gibbons and Chakraborti (2011, pp. 496). We confine
ourselves to the problem of testing H : 0 = 0 against H; : 0 > 0 for the other cases are
similar. The desired performance criterion for a test based on an asymptotically stand-
ard normal statistic T}, , is the power function of the test given by

Po(Tpyn > Ty) for 0>0.

The asymptotic relative efficiency (ARE) of the test based on T, , with respect to
that based on another statistic T}, , is given by

m,n

ARE(T,T") = lim g
m, n—oo M n

where (m*,n*) = h(m,n) for some function h with

lim Pgm,”(Tm,n > ‘C“) = *lim Pgm*)n* (T:n*,n* > ‘L'o()

m, N—00 m*, n*—o0

where (0,,,) is sequence of alternatives that converges to 0, provided the limit
exists uniquely.
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Gibbons and Chakraborti (2011) further give conditions under which ARE of tests
based on asymptotically normal statistics are comparable. We state these conditions in
terms of T, ,.
a. dE(;g"") exists and is positive and continuous at 0=0. For r =2,3,..,,
exists and are equal to 0 at § = 0.

b. The conditions (b)-(d) to follow are satisfied in our case under the assumption
that m — oo,n — oo and 2 — 7 € (0,00).

c. There exists a positive constant c, called the efficacy of T, ,, such that

(T 0]y
MV (T, n)]g—o

d"E(Tm, n)
do”

d. There exists sequence of alternatives (0,,,) such that for some constant d > 0,
we have 0, , = \/i% and
[dE(Tm,n)/de] |9:9m,,,

im =1
m—00 {dE(Tm,n)/dHHH:O

and
VTl
m—00 V(Tm,n)lozo

Tom, n*E( ‘0 Lmyn ™ By 1) 10=0m, n < Z:| — (D(Z)

e. lim,_o P
\/ m n ‘() Om, n

Under these conditions on the statistics, the ARE of the tests based on these is express-
ible as the square of the ratio of their efficacies:

ARE(T, T") — <£)2_ - AE(T0) /01 /Y (Tl
, c* m—oo [dE(T;;,n)/dG] /mv( T )loco

:1’

Note here that E(.) and V(.) refer to asymptotic parameters and not necessarily exact
means and variances.

3.1. Efficacies T and T2

Now the test for “a posteriori” location shift is based on

N - L0 iV (0,)
AV (x) \/i(u) (0,x) \/i(n)(@, %) \/A(ll)(x)

The asymptotic mean and variance of T,(i),, under general alternatives are

(11
E<T(1)n> = __8 and V(Tr(nl)n> = M
(11

i, =

, )
(6, %) A
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Therefore,
dE(T,S}?n) m
@ T A

an
Now as under Hy : 0 = 0 and for m,n — oo with * — 1 > 0, % ~ iV (0, x)

im [dE (Tiwn)/ dg} lo=0,,,
" BT, a0l

and

 V(Tile,,
lﬁn Ty
m=2 V(T o

as V(T,(nl,)n) ~ 1 under 0 =0 and i""V (0, x) continuous function of 0. Thus,

dE(TY,) /do
¢ = lim [ (L] L’:O = ! = \/An — AAG AL = VA2 >0

TSV, AT @)

is ﬁ times the square root of the efficacy (see Gibbons and Chakraborti 2011) of the

test based on T(1).
For the test under “a priori” model recall that

~(2) ~(2)
T(Z) _ em,n o <0m,n -0 0 )0,,,,”(9)

MG ) \omn(®) | omn(0)) Tma(0)

is asymptotically normal with asymptotic parameters

0
E(T%):G @ and V(TP) =

with o2, (0) = & [Zfl Z]’le (T—WFF%’)}

Now,

while

BT /a0,

lim =

m—o0 [dE(T;Sf,)n)/ de} lo=0

and
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2
V(T e,
lim o
"= V(To/n)lg—o

. . 2
as rgj and 7; are continuous at the class boundaries and V( T,(n,)n) lo—o = 1. Hence, we have

i (4E(T2),)/do)
¢ = lIm >
V(T e[ D

is ﬁ times the square root of the efficacy (see Gibbons and Chakraborti 2011) of the

test based on T%).

_ k
0=0 = >0

3.2. Efficacy of the t-test and comparisons with it

In applying the t-test, the assumption made is that the ordinal variables M and N are
discretized normal random variables with the same variance and to test for equality of
their means, one defines

Zj:]l igi and Nﬂ — Zi:llf’

=~ ~L— are the average scores of the manifest variables,

where M, =
respectively, for Y and X and s}, = -—— [Zf;l g — mM>, + S 2f — uN i} :
Define y(0) = E(M,, — N,,) = Y5 i(6; — m;) and
Gon = V(Mu = Ny) = V(Mp) +V(Ny)

m,n
= ki1 2 1 | kil 2
2 . 2 .
=— g i°0; — g i0; +- E i‘mi — E in;
m = =1 1= =1

2 2
=—0yt—0
m M N

*2
m,n

m+n
\| ——Sm+n — \/A0%; + 0%  almost surely
n

To obtain the asymptotic mean and variance of T®) under general alternative 0 we see

Under the assumption, m,n — oo and 2 — 1 we have ma}. , — a3, + Aoy, and

that
o _ mn (Mm — Nn>
’ m-+n Sman
_ <Mm ~ Ny y0) ww)) VT
T Tonn

m-+n
Sm+n
n
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Mm 7Nn7¢(0)

o is asymptotically standard normal and

Vma), \/UM‘l‘/LGN — K(0)
/m+n5m+n \//IJM + O'N

. . (3)
Hence, asymptotic mean and variance of Tm,,, are

almost surely.

@y Vmy(0) () _ g2
BTY) = B and V(IR = KO)

Thus, we have,

dE(TS,) s l /302 + 0% S0y (0) 4\ /Aa%, + %,

a (702, + %)

So, under Hy : 6 = 0,

dE(TS),) 1 dy(0)
do 9:°‘mﬁagw+ag' o |,_,

as ¥(0) = 0. Now,
g,
N Y
k
= i(f (i = 0) +f(xin = 0)) = f(x1 = 0) + (k+ 1)f (i — 0)

i=2
k

YR
i=1
as Ogy1 = 1 — F(xx — 0) and 0; = F(x; — 0). So,
dE(T) »)
do

T

Furthermore, we observe that for 6, , = ﬁ,

N (1) /0],
"= [aB(12)/d0) 1o,

and

V(Ti)los, |

lim
m—oQ 3
V(TS oo

2
as m — oo and 0,,, — 0 we have Y(0,,,) — 0 and Z—Q; — 1 as Y(0) and o3, are con-

tinuously differetiable function of 0.
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Hence, under the assumption ! — 4 as m,n — oo we have

¢, = lim [dE(TY(;’)n)/dG} 0=0 _ Zf:lf (xi)

e (e (o))

>0

i=1 i=1

is L\/. times the square root of the efficacy of the t-test with Likert-type scaled data.
m

Thus, the asymptotic relative efficiency of the test based on T relative to the t-test,
when 2 — 4, equals

ARE(T, T0)) = <C_0>2 _ Auall ) ((Zzi(:l;:"'))z(zﬁl ini>2)

(%)
and that of the test based on T?), equals
. RS- (Sm))
(Sft) 5w

(%)

ARE(T®, 700 = (C_l>

3.3. Efficacy of the U test and comparisons

The Mann-Whitney U statistic is

n m

Unn=»_> Dy

i=1 j=1

with
for i=12,.,nj=12,..,m.

For the Mann-Whitney test with Likert-type scaled data, Gibbons and Chakraborti
(2011, pp. 494) compute

_VI2[[7 f7(x)dx]
SR/

as —— times the square root of the efficacy. So the asymptotic relative efficiency of T(!)

and T® relative to the Mann-Whitney test when o — ] are

(1) _ (& 2: (A+2)A1n2
ARE(T ;U) <c3) IZ[IEOOOfZ(x)dx]Z

and
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2

C3> TR P, >+ 1)

As illustration, ARE calculated for two choices for the latent distribution and varying
class boundaries are given in Appendix B.

4, Unbiasedness and robustness considerations

In this section, we examine how the approximate power function of the test behaves
under small perturbations of the underlying latent distributions. We write the approxi-
mate power function of the test as

APFg(0) =1im P(0,,,, > 1,6£(0))

—1im |p( 220 Onn =0, 0 T
(a5 ol )

=lmP (Y n > 1,)

m,n

where Y, , = ZEZ% {9:;%94—%(0)}, Here, or(0) stands for the earlier defined o, ,(0)
and 6¢(0) is as before the estimate obtained by replacing unknown class boundaries by

their natural estimates. Following the results of the previous sections we see that Y,, , is
0
AN <UF(0) R 1). Hence,

APFp(0) =1 — @(r“ - %@)

“*(=z0)

For testing Hy : 0 < 0 against H; : 0 > 0 it can be noted that the approximate expres-
sion for APFp(0) exceeds o for 0 > 0 and lies below o for 6 < 0. Hence the test is
asymptotically unbiased at significance level o (see Lehmann and Romano 2008). Again,
dAPFz(0) <l>( 0 )ap(e)—ed%ap(e)
do Y op(0) (ar(0))?

whence the function is non decreasing if %ln op(0) < for all 0. It is possible to inves-

tigate this condition in more detail in some special cases which we omit.

Now, we consider a sequence of distribution functions Fy, N > 1, such that each of
them has a density satisfying the same conditions imposed on f and assume that
fn(x) — f(x) pointwise as N — oo, where fy is the density of Fy,N > 1. By Scheffe’s
lemma (see Resnick 2005) this implies convergence also in total variation; that is,

sup |Fy(B) — F(B)| — 0
BeB(R)

and therefore in particular Fy — F weakly. Now,
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k k
1 Fy(xi — 0)(1 — Fx(x; — 0)) En(x:)(1 — Fn(x;))
or,(0) == +
w(0) k> {ZZ mfn(xi — O)fn(x; — 0) ,Z:; ”fN i)fn (%)
As Fy(x) — F(x) and fy(x) — f(x) for all x = xj,j = 1,2,...,k, so o5, (0) — op(0) and
hence m — o@» 8 N — 00, m, n being kept fixed.
This implies
APFy, (0) — APFr(0) for all 0.

5. Discussion

The tables in Appendix B show that both statistics perform better than ¢ test and
Mann-Whitney U test with respect to ARE when the latent distribution is assumed to
be Standard Normal almost in all situations. Only exception is the case where all class
boundaries are positive. Then ARE of T®) with respect to both tests t and U are less
than 1. If the latent distribution is skewed, for example gamma, then either T!) or T(?)
performs better than ¢ test but both are more efficient than Mann-Whitney U statistic
in all choices of class boundaries.

The table in Appendix C shows the empirical power comparison when the latent dis-
tribution is assumed to be standard normal. The test based on the statistic T!) performs
always better than t and U tests. Although T does not always meet the level condition
with empirical level greater than 0.05, this test is robust locally as shown in Section 4.

Regarding the matter of choice between the proposed statistics, using T(!) is recom-
mended as it is based on the MLE and it performs better than popular tests like ¢ test
and U test in nearly all situations when we believe any difference in opinions in the two
groups can only be “a posteriori”, where both are applicable. But as mentioned earlier,
the relatively more ad hoc but computationally far less demanding T® is applicable
also in situations when we have prior information or suspicion that difference between
opinions of two sets of subjects actually obtains due to their different perceptions about

different categories, when T(!) is unsuitable.
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Appendix A
For, F = ® see Table Al.

Table A1. Comparison of variances.

Weights
. - 7 1
Class boundaries Vi Vk—i Vitk=D) Vk=i+1 \ilk—i+1) Vi w=ED
(—3.0, —1.5,0.0,1.0,1.5,3.0) 0.02792 0.02702 0.02443  0.02469 0.02484 0.02560 0.02609 0.02538
(-3. 0 - 1.5, —-1.0,0.0,1.5,3.0) 0.02469 0.03563 0.03147  0.02792 0.02484 0.02874 0.02609 0.02538
(=1.0, — 0.5, — 0.25,0.25,0.5, 1) 0.02463 0.02655 0.02594  0.02463 0.02438  0.02459 0.02418 0.02426
(0 0, 0 5,1.5,2.0,2.5,3.0) 0.10304 0.04262 0.05086  0.05808 0.07656 0.05730 0.07948 0.07778
(-3.0, — 2.5, —2.0, — 1.5, — 0.5,0) 0.05808 0.14899 0.12237  0.10304 0.07656 0.10815 0.07948 0.07778

Appendix B
See Tables B1-B3.

Table B1. ARE comparison under F = ©.

Class boundaries 2 Statistics ARE(T, t) ARE(T, U)
(=00, — 1.5, — 0.5,0,0.5,1,1.5,00) 2 7O 1.018107 1.324463
7@ 1.325761 1.276096
1/2 T 1.018107 1.655579
7@ 1.325761 1.5951
(=00, = 1.5, =1, = 0.5,0,1,1.5,00) 2 7O 1.009567 131539
7@ 1.512612 1.174025
1/2 T 1.009567 1.644237
7@ 1.512612 1.467531
(=00, — 1.0, — 0.5, — 0.25,0.25,0.5,1,00) 2 T 1.020247 1.292425
7@ 1.442685 1.267061
1/2 T 1.020247 1.615531
7@ 1.442685 1.58382
(—=00,0.0,0.5,1,1.5,2.0,2.5, 00) 2 7O 1.036566 1127719
7@ 0.6234132 0.66433
1/2 T 1.036566 1.409649
7@ 0.6234132 0.8304124
(=00, —2.5, —2.0, = 1.5, =1, — 0.5,0, 00) 2 7O 1.036566 1127719
7@ 3.20109 0.477238
1/2 T 1.036566 1.409649
)

3.20109 0.596548
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Table B2. ARE comparison under F = Gamma(p, o).

Class Boundaries Parameters A Statistics ARE(T, t) ARE(T, U)
(0.0,0.15,0.85,1.2,1.5, 00) a=1p=2 2 ™ 2.806951 3.768146
7@ 0.907744 1.024211
1/2 ™ 2.806951 4710182
T 0.907744 1.280264
a=1p=3 2 ™ 0.7988513 2.292876
7@ 1.239994 1.890051
1/2 ™ 0.798851 2.86609
7@ 1.239994 2.362564
a=2,p=2 2 ™ 5.261407 2.764925
7@ 0.3209601 0.2375692
1/2 ™ 5.261407 3.456156
7@ 0.3209601 0.2969615
(0.0,0.25,0.5,1.0,1.5, 00) a=1p=2 2 ™ 1.836326 3.282773
7@ 1.142395 2451794
1/2 ™ 1.836326 4.103466
7@ 1.142395 3.064742
a=1p=3 2 ™ 0.6412053 2.486185
7@ 1.191867 2472926
1/2 ™ 0.6412053 3.107731
T 1.191867 3.091157
a=2,p=2 2 ™ 3.394966 2.231792
7@ 0.7754737 1.112527
1/2 ™ 3.394966 2.78974
T 0.7754737 1.390658

Table B3. ARE comparison under F=U-shaped distribution with density function f(x) = c(x — a)’
for0 <x < 1.

Class boundaries Parameters A Statistics ARE(T, t) ARE(T, U)
(0,0.15,0.3,0.45,0.60,0.75,0.90, 1) a=1 2 T 0.3796114 1.8229498
7@ 0.1566958 0.7524762
12 M 0.2060779 1.2370206
7@ 0.1566958 0.9405952
a=—1 2 ™ 0.6779190 0.4896931
7@ 1.7988945 1.2994270
12 M 0.3429895 0.3096971
7@ 1.7988945 1.6242838
a=02 2 7™ 0.17445 22271
7@ 0.001566 0.02
12 M 0.1028 1.640667
7@ 0.001566 0.025
a=05 2 ™ 257143 2.5321
7@ 0.00595 0.00585
12 M 2.57143 3.1651
7@ 0.006 0.007
a=08 2 ™ 0.53574 2.23098
7@ 0.004688 0.01952
12 ™ 0.31610 1.6454
7@ 0.004688 0.02440
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Appendix C
See Table Cl1.

Table C1. Simulated power comparisons under F=® with 10,000 simulations.

Sample sizes Class boundaries 0 T T@ t U
m = 100,n = 50 (=00, — 1.5, —0.5,0.5,1.5,00) 0 0.0473 0.1015 0.0494 0.0407
0.15 0.6863 0.1617 0.1257 0.1123
0.25 0.9792 0.2861 0.2484 0.2378
0.5 0.999 0.7051 0.7163 0.7404
1 1 0.9945 0.9993 0.9888
(=00, —0.5,0.0,0.5,1.5,00) 0 0.0413 0.201 0.0499 0.0409
0.15 0.6778 0.3079 0.1302 0.1226
0.25 0.9933 0.5051 0.2701 0.2513
0.5 1 0.9195 0.7807 0.7579
1 1 1 0.9996 0.9993
(—0,0.0,0.5,1.0,1.5,00) 0 0.0412 0.2875 0.0517 0.0309
0.15 0.6215 0.3956 0.1154 0.0913
0.25 0.991 0.5732 0.2493 0.2237
0.5 1 0.9425 0.7446 0.7303
1 1 1 0.9998 0.9999
m = 50,n =100 (=00, — 1.5, —0.5,0.5,1.5,00) 0 0.0505 0.1015 0.0521 0.0428
0.15 0.2345 0.176 0.1223 0.1109
0.25 0.5316 0.3009 0.2547 0.2418
0.5 0.9914 0.7394 0.7126 0.7467
1 1 0.9957 0.9991 0.9994
(=00, —0.5,0.0,0.5,1.5,00) 0 0.0522 0.2083 0.0518 0.0461
0.15 0.2015 0.3116 0.1274 0.119
0.25 0.5222 0.5073 0.2797 0.2499
0.5 0.9910 0.9174 0.7804 0.7566
1 1 1 0.9996 0.9998
(=00,0.0,0.5,1.0,1.5,00) 0 0.0411 0.2965 0.0561 0.0337
0.15 0.1988 0.3907 0.1342 0.0972
0.25 0.5005 0.5683 0.2667 0.2134
0.5 0.9960 0.927 0.7601 0.7193
1 1 1 0.9995 0.9996
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