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A B S T R A C T   

Using the combined first-principles, tight-binding, and machine-learning interatomic potential approaches, we 
explore the electric field effects on the electronic, thermoelectric, and optical properties of buckled hexagonal 
isoelectronic HNC6 monolayers, a member of HAC6 (A = N, P, As) family. These material(s) possess a Dirac cone 
in their band structure which can be attributed to the same electron count of every site (C/N) and the presence of 
a weak π bond between carbon and nitrogen atoms. We predict that a transverse electric field can induce a 
tunable bandgap, the gap is nearly proportional to the electric field strength, suitable for use in the electronics 
industry. The thermoelectric performance of HNC6 is better than graphene, which can be further improved by the 
application of an external electric field. The region of the chemical potential for the optimal thermoelectric 
performance can also be tuned by the electric field. The Wiedemann–Franz ratio deviates from that of ordinary 
metals and is nearly twice that of graphene and four times that of universal value. For parallel polarization, HNC6 
shows pronounced optical response in the infrared and visible region. Plasma frequencies appear in the visible 
regions which are blue-shifted with electric field strength. The P and As counterpart of HNC6 shows similar 
electronic, thermoelectric, and optical properties on the application of electric field, with thermoelectric per
formance even superior to HNC6. These intriguing electronic, thermoelectric, and optical properties in presence 
of an electric field suggest great potential of HAC6 for novel electronic, energy harvesting, and optoelectronic 
devices.   

1. Introduction 

Graphene and its exquisite electronic, thermal, optical, and me
chanical properties [1–6] fascinate researchers both in theory and 
experiment. The novel properties of graphene lie in its unique band 
structure (BS) exhibiting Dirac cones at the Fermi level [5]. Graphene 
being a gapless semi-metal, its potential for applications in present-day 
nano-devices is somewhat restricted. Thus various methods, namely 
chemical functionalization [7], introduction of defects [8] and dopants 
[9], strain [10], application of electric fields [11] have been employed to 
introduce a finite gap in the energy dispersion at the Dirac point. 
Nonetheless, these methods were not been adequately progressed for 
fundamental and technological purposes. In the quest for new promising 
two-dimensional (2D) materials, group IV-V systems got great attention 
[12–15], among them carbon-based compounds are found to be more 

stable than others [16]. Typically the lattices with hexagonal symmetry 
or its topological equivalent are mostly found to have Dirac cones. 

Recently H.Y. Lu et al. proposed a family of HAB6 (A = N, P, As, Sb, 
Bi; B = C, Si, Ge, Sn) monolayers possessing Dirac cones on symmetry 
lines [17]. Intuitively they followed the electron-counting rule [18] by 
hydrogenating the P atom of PC6 monolayers [19] and converting it to a 
semi-metal, which is otherwise a direct-gap semiconductor. In PC6 the 
C–C bonds are sp2 hybridized as graphene and P–C bonds are sp3 

hybridized, one sp3 orbital on the P atom contains an electron pair. Upon 
hydrogenation, these P atoms form an H-P covalent bond, with every site 
(C/P) of the 2D plane having the same electron count as graphene. 
Though, due to sp3 hybridization of P atoms, π bonds between P–C will 
be much weaker than C–C π bonds. 

Two points about HAB6 monolayers are interesting, firstly the pres
ence of Dirac cone at K points, secondly the buckled structure with 
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hexagonal symmetry. In nanostructures with a finite thickness/buck
ling, the commonly used technique to precisely manipulate the Dirac 
cone is the application of a transverse external electric field [16,20]. 
Since HAB6 has buckled structure, we expect that its electronic structure 
will behave similarly. Graphene-like high carrier mobility along with 
bandgap flexibility can present HAB6 suitable for applications in nano 
and opto-electronics devices. 

In this paper, we explore the electronic, thermoelectric, and optical 
properties of hexagonal carbon-based group IV-V HAC6 (A = N, P, As) 
monolayers in presence of an external transverse electric field. Our focus 
is mainly on HNC6, a Dirac material from HAB6 family unless otherwise 
stated. We organized the paper as follows: In the next section, we present 
the computational details used for the investigation of the different 
properties of the structure(s). We also propose a tight-binding (TB) 
model Hamiltonian that efficiently demonstrates the emergence of Dirac 
cone at K points. In the ‘Result and Discussion’ section, we first study the 
electronic properties of HNC6 both in the presence and absence of an 
external electric field. In this regard, an effective Hamiltonian is 
considered for TB calculations and compared to the first principle cal
culations. Next, we consider the thermoelectric and optical properties of 
the structures with and without the application of external perturbation. 
Finally, we briefly discuss the salient features of the P and As counter
part of HNC6. 

2. Computational methods 

2.1. First principle calculation 

We have performed our density functional theory (DFT) calculations 
implemented with the Quantum ESPRESSO package (QE) [21,22]. A 
projector augmented wave (PAW) technique [23,24] is utilized to treat 
the ion–electron interaction. The exchange–correlation energy of the 
electrons is treated via the generalized gradient approximation within 
the scheme of Perdew-Burke-Ernzerhof (GGA-PBE) [25]. The kinetic 
energy cutoff for the wave function and charge density is taken as 50 Ry 
and 600 Ry, respectively. To avoid any spurious interactions between 
two neighboring HAC6 layers, a sufficiently large vacuum space (15 Å) is 
kept between the layers. The Brillouin zone (BZ) is sampled with a 
uniform 16 × 16 × 1 Monkhorst–Pack (MP) [26] special k grid points for 
the structural optimization. The geometry of the sheets is optimized 
until the residual forces on each atom are converged below 0.01 eV/Å. 
For the electronic, thermoelectric, and optical properties a sufficiently 
dense 36 × 36 × 1 k-point mesh is used. 

Better representation of the potential energy surface has always been 
an important issue for the scientific community while performing 
atomistic simulations or experiments. Nowadays machine-learning 
models are being used extensively in the field of materials science as it 
computes complex functions easily [28]. In the present work, the DFT 
calculations have been replaced by the moment tensor potential (MTP) 
[29]. Here MTP belongs to the machine-learning interatomic potentials 
(MLIP) [30–34] families. It offers a flexible functional form having an 
incredibly high level of accuracy. The situation is quite similar to clas
sical potentials where the parameters are optimized on a set of training 
configurations. Here the training sets are created by employing ab-initio 
molecular dynamics (AIMD) simulations. At the initial stage, MTP shows 
its effectiveness while dealing with single-component systems [29], but 
in the later stage it has been successfully applied in multi-component 
systems [35,36]. Here local potential is being used i.e. the total energy 
E of the system is partitioned into contributions V of neighborhoods ui of 
each i-th atom: E ≡ EMTP =

∑N
i=1V(ui), where N is the total number of 

atoms. Here the j-th atom is referred to be the neighbor of the i-th 
(central) atom if the distance between them is less than a predefined cut- 
off distance Rcut . The neighborhood then can be expressed as the 
following collection, 

ui = ({ri1, zi, z1},…, {rij, zi, zj}…, {riNnei , zi, zNnei}) (1)  

where rij are the relative atomic positions (interatomic vector), zi and zj 

are the types of the central and neighboring atoms respectively and Nnei 
is the number of atoms in the neighborhood. Each one of the contribu
tion to the total energy has the following form: V(ui) =

∑
αξαBα(ui), 

where ξα are the free parameters of the potential to be optimized and Bα 
are the basis functions. We construct the basis functions as all possible 
contractions of the following moment tensor descriptors: 

Mμ,ν(ri) =
∑Nnei

j=1
fμ(|rij|, zi, zj)r⊗v

ij (2)  

which yields a scalar [29]. The first factor fμ(|rij|, zi, zj) within the sum
mation is the radial part which depends only on the distance between 
atoms i and j and their types. If we expand the radial part through a set of 
radial basis functions ϕβ(|rij|) multiplied by a factor (Rcut − |rij|)

2 for 
smoothing near the cut-off radius, then we will have the following form: 

fμ(|rij|, zi, zj) = c(β)μ,zi ,zj
(3)  

here c(β)μ,zi ,zj are the radial coefficients. The outer product is denoted by the 
symbol “⊗ ” referring to the second factor of Eq. 2 as the angular part. 
Now to optimize the ξα and c(β)μ,zi ,zj parameters of an MTP, one needs to 
minimize the following problem (training of MTP): 

∑K

k=1
we

(
EAIMD

k − EMTP
k

)2
+wf

∑N

i
|f AIMD

k,i − f MTP
k,i |

2
+ws

∑3

i,j=1
|σAIMD

k,ij − σMTP
k,ij |

2→min

(4)  

here EAIMD
k , fAIMD

k,i and σAIMD
k,ij are the energy, atomic forces and stresses in 

the training set respectively and EMTP
k , fMTP

k,i and σMTP
k,ij are the corre

sponding values calculated with the MTP. K is the number of the con
figurations in the training set and we,wf and ws are the non-negative 
weights that denote the importance of energies, forces, and stresses in 
the optimization problem respectively. In this work we have taken the 
values of we,wf and ws are 1, 0.1 and 0.001 respectively. Here readers 
are encouraged to look into Ref. [37] for further details about the guide 
to create the training set, the procedure to calculate MTP forces, and for 
all the example files of that work. In this work, the phonon spectra have 
been calculated in two ways to check the validation and the accuracy of 
the MTP employed for these systems: i) by using density functional 
perturbation theory (DFPT) which were carried out over 2 × 2 × 1 
supercell using a 2 × 2 × 1 k-point mesh. After this stage, PHONOPY 
[27] package was employed to obtain the phonon dispersion curves and 
the second-order harmonic force constants. ii) The force calculations 
have been done by using MTP and then we have used the PHONOPY 
[27] package to obtain the phonon dispersion curves. In Fig. S1 of the 
ESI, we have depicted the phonon spectra using both methods. It can be 
observed that the MLIP results are almost identical to the DFPT results. 
This proves the validity as well as the quality of our machine-learning 
potentials. The use of MTP has been proven to be quite successful in 
predicting new novel materials [35,38], in order to study lattice dy
namics [37,39,40] and for calculating thermal conductivities [41–43] of 
various systems. In some of the very recent studies [37,44], it has been 
demonstrated that MTPs trained over short MD trajectories can accu
rately reproduce the phononic properties of various 2D materials 
compared to the DFT simulations. Following Ref. [37], the training sets 
are being prepared by conducting AIMD simulation within the GGA 
functional for 2000 time steps at 50 K and 100–700 K over 2 × 2 × 1 
supercell using a 2 × 2 × 1 k-point grid with a time step of 1 fs. The 
lattice part of the thermal conductivity calculations is performed by the 
full iterative solution of the Boltzmann transport equation as imple
mented within the ShengBTE [45] package. During calculations of the 
lattice thermal conductivity, the most challenging part is to evaluate the 
anharmonic (third-order) force constants, which normally need several 
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hundred single point DFT calculations. But here MTPs are fitted 
passively that has replaced the computationally expensive DFT simula
tions for the anharmonic force constants calculations. In this work, we 
have used the same number of supercells as those employed while doing 
the DFPT calculations. Besides, we have considered up to the seventh 
nearest neighbors interaction to determine the lattice thermal conduc
tivity. Electronic transport properties e.g. Seebeck coefficient, electrical 
conductivity, electronic thermal conductivity are calculated by solving 
the semiclassical Boltzmann transport equation within the constant 
relaxation time approximation as implemented in the BoltzTraP code 
[46], which involves the solution of the semi-classical Boltzmann 
transport equation (BTE) within the constant relaxation time approach 
and rigid band approximation. The electrical conductivity (σαβ), Seebeck 
coefficient (Sαβ) and electronic thermal conductivity (κe

αβ) tensors are 
expressed in terms of temperature (T) and chemical potential μ as [46]: 

σαβ(T, μ) =
1
Ω

∫

σαβ(ε)
[

−
∂fμ(T, ∊)

∂ε

]

dε (5)  

Sαβ(T, μ) =
1

eTσαβ(T, μ)

∫

σαβ(ε)(ε − μ)
[

−
∂fμ(T, ∊)

∂ε

]

dε (6)  

κe
αβ(T, μ) =

1
Ωe2T

∫

σαβ(ε)(ε − μ)2
[

−
∂fμ(T, ∊)

∂ε

]

dε (7)  

where α and β represent the tensor indices. The symbols ε(k), τ(k), f , e 
and Ω represents the band energy, relaxation time, Fermi function, 
electronic charge and volume of the cell, respectively. 

The reliability of the relaxation time approximation is well estab
lished in previous studies [46–49]. This approximation has been 
extensively used in several studies to solve the Boltzmann equation, 
which transforms the integrodifferential equation to a numerically 
simpler differential equation. The evaluation of the relaxation time (τ) is 
required for calculation. However, since experimental data related to τ is 
not available, we present the scaled values of all the transport properties 
with temperature keeping τ as a fixed parameter. 

The optical properties of the systems were calculated with the 
random phase approximation (RPA) approach using Troullier-Martins 
type [50,51] norm-conserving (NC) pseudo-potentials with PBE 
exchange–correlation and kinetic energy cutoff for the wave function of 
60 Ry. The optical properties of a medium can be fully described by the 
complex dielectric ∊α,β(ω) function given by 

∊α,β(ω) = ∊1α,β (ω)+ i∊2α,β (ω) (8)  

= 1 +
4πe2

ΩNkm2

∑

n,n′

∑

k

〈uk,n′
⃒
⃒
⃒p̂α

⃒
⃒
⃒uk,n〉〈uk,n

⃒
⃒
⃒p̂†

β

⃒
⃒
⃒uk,n′ 〉

(Ek,n′ − Ek,n)
2

×

{ f (Ek,n′ )

Ek,n′ − Ek,n + ℏω + iℏΓ
+

f (Ek,n′ )

Ek,n′ − Ek,n − ℏω − iℏΓ

}
(9)  

where Γ is the intersmear broadening parameter and ω is the frequency of 
the incident light in eV. The real and the imaginary part of the dielectric 
function is related to each other by the Kramers–Kronig transformation 
[52]. 

The electron energy loss spectrum (EELS) is proportional to the 
imaginary part of the inverse dielectric function, given by 

L(ω) = Im
{

−
1

∊α,β (ω)

}

=
∊2α,β (ω)

∊2
1α,β

(ω) + ∊2
2α,β

(ω) (10)  

We have considered a large number of empty bands (Nbands > 100) for 
the optical properties calculation for more accurate responses. We are 
keen on the investigation of the optical properties of the systems uti
lizing DFT as a computationally inexpensive method. 

2.2. Tight-binding model 

We present an effective nearest-neighbor (NN) TB Hamiltonian that 
parametrizes the energetic description of the lattice in the vicinity of the 
Fermi energy. 

H0 = ∊C

∑

i∈C
c†i ci + ∊N

∑

i′ ∈N

c†
i′

ci′ +
∑

i,j∈C
tij
(
c†i cj + h.c.

)
+

∑

i′ ∈N,j∈C

ti′ j

(
c†

i′
cj + h.c.

)

(11)  

where ∊C(∊N) is the on-site energy of site C(N) atoms, tij(ti′ j) is the 
hopping integral connecting nearest-neighbor C,C (N,C) sites. 

To investigate the effect of the transverse electric field, we incor
porate the following term in Eq. (11), 

HE =
eE
2

∑

i∈C,i′ ∈N

(
zic†i ci + zi′ c

†

i′
ci′
)

(12)  

where e is the electron charge, E is the transverse electric field, zi(zi′ ) are 
the z-coordinates of the C(N) atoms. Therefore, in the presence of an 
external electric field, the total Hamiltonian of the system now reads as: 

H = H0 +HE (13)  

3. Results and discussions 

3.1. Structural details and verification 

The optimized crystal structure of HNC6 monolayer is shown in Fig. 1 
(a). The unit cell, which has hexagonal symmetry, comprises 2 H, 2 N, 
and 12 C atoms. This structure can also be viewed as a hydrogenated- 
nitrogen-doped graphene structure, with the position of hydrogenated- 
nitrogen forming a large hexagon as shown in the figure. It is 
composed of C6 ring surrounded by six NC5 rings. The lattice constant for 
the structure is 6.5012 Å, which is very close to the previously predicted 
value [17]. Since the buckling of the adjacent hydrogenated-N atoms is 
in opposite direction concerning the carbon plane, this lattice structure 
can be considered as having three layers (Fig. 1(b)) with buckling of Δz 
= 0.87 Å, between two adjacent N atoms. The buckling distance be
tween N atoms is higher than silicene (Δz ∼ 0.50 Å) and germanene 
(Δz ∼ 0.70 Å) [53]. Four different bond lengths in the 2D plane can be 
realized owing to two non-equivalent positions of C atoms, labeled as C1 
(carbon atoms in the C6 rings) and C2 (carbon atoms adjacent to N 
atoms). The different bond lengths of this structure are detailed in 
Table 1. 

Fig. 1. Optimized structure of 3× 3 supercell of HNC6 with (a) top and (b) side 
view. The unit cell is marked with the parallelogram. The blue dotted line 
connects the hydrogenated-N atoms forming a large hexagon. 
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As reported in Ref. [17], this structure is stable at the ground state 
with no imaginary phonon frequency. The molecular dynamics study 
reveals that the atomic structure is thermodynamically stable at a tem
perature of 400 K. Also, the structure is mechanically stable. 

The formation energy is also calculated using ΔE =

(2EHNC6 − EH2 − 2ENC6 )/2, where ΔE is the formation energy. This for
mula is defined according to the chemical equation 2NC6 + H2→2HNC6. 
The calculated value of the formation energy is − 1.8618 eV per unit cell. 
The negative sign of the formation energy also confirms the stability of 
the HNC6 structure. 

3.2. Salient features of electronic properties 

We first investigate the electronic band structure (BS) and projected 
density of states (PDOS) of HNC6 monolayers and is depicted in Fig. 2. 
The band structure is evaluated along the high symmetry path Γ →M →K 
→Γ of the irreducible BZ. The valence band maximum and conduction 
band minimum touch each other at K high-symmetric point. The total 
DOS at the Fermi level is zero which further confirms the existence of the 
Dirac cone. The charge carriers of the system behaves as massless Dirac 
fermions with Fermi velocity vF = 1

ℏ
dE
dk| k

→
→ K→

= 5.64 ×105 and 6.31 ×105 

m/s along K→M and K→Γ directions. 
We now explore the inherent morphology of this structure and 

emergence of the Dirac cones using the TB model as given in Eq. (11). 
The Eq. (11) can be solved by diagonalization of a 14 × 14 matrix in the 
reciprocal space [54] for obtaining the energy dispersion curves. In 
solving the TB Hamiltonian we have considered only the C and N atoms. 
Here we argue that H atoms in the structure are in a valence saturation 
state, whereas there is one extra electron in each N/C site, which con
tributes to the energy band calculation. We represent NN hopping as t1,
t2, t3 and t4 for NN C1–C1, C1–C2, C2–C2 and N–C2 bonds, respec
tively. We consider only the energy states near the Fermi level. The DFT 
generated low energy band is best fitted with the TB results (Fig. 2) 
taking t1 = − 2.31, t2 = − 2.44, t3 = − 2.40 and t4 = − 0.60 eV. The on-site 
energy of N and C atoms are taken as 1.35 and − 1.05 eV respectively to 
set the Fermi level at zero. Small value of t4 (nearly 25 percent of t1,t2,t3) 
reflects weak π bonding between N and C atoms. The PDOS calculations 
also reveal that pz orbitals of C atoms mainly contribute near the Fermi 
level. Nonetheless, hydrogenated N atoms conserve the same electron 
count at every site, and the weak π bonds between N and C might be 

responsible for the Dirac cone which is otherwise absent in NC6. The 
Dirac cone is robust under the variation of hopping energy. It remains 
intact and there is no shifting or splitting of the Dirac cone along the k- 
path. However, the Dirac point gets shifted along the vertical line 
through K high-symmetric point as the hopping strength is varied. 
Notably, it moves upward for |t4| <0.60 eV and downward for |t4| >0.60 
eV. 

3.2.1. Effect of transverse electric field 
The buckling nature of HNC6 allows studying the effect of the 

transverse electric field on the electronic properties by both DFT and TB. 
The application of a transverse electric field breaks the reflection sym
metry, resulting in a bandgap opening. We have varied the electric field 
in the range of 0–1 V/Å. With the application of electric field, the Dirac 
cones at the K high symmetric point begin to split, and a small direct 
bandgap emerges. The linear bands at the Fermi level now gradually 
transform into parabolic ones. The calculated BS and DOS for E = 0.5 
and 1.0 V/Å are shown in Fig. 3(a-b), respectively. The bandgap is found 
to increase with the magnitude of the applied field and is depicted in 
Fig. 4a. Interestingly, the bandgap tuning by an external electric field is 
possible only due to the buckling, which enters through N atoms, 
otherwise planar structures do not allow this band modulation. The 
bandgap calculated by DFT calculation is parabolic, while that for TB is 
almost linear. This behavior may arise due to the screening effect of the 
hydrogenated-N atom, which is not considered in the TB method. The 
screening effect arises due to the polarization of charges with the rise of 
the electric field. This in turn screens the external electric field [11]. The 
rate of bandgap opening (dEg

dE ) is not constant and is ∼ 0.07 eÅ and 0.22 
eÅ at small and large electric field, respectively. 

Table 1 
Different bond length (Å), their orientation w.r.t. X − Y plain and the hopping amplitude (t′s) (eV) between different atoms in the HNC6 monolayer.  

Parameters N-C2 C1-C1 C1-C2 C2-C2 N-H 

bond length 1.508 1.424 1.399 1.396 1.049 
Orientation sin− 1(0.282) sin− 1(0.012) sin− 1(0.012) sin− 1(0.013) - 

Hopping Amplitude − 0.60(=t4)  − 2.31(=t1)  − 2.44(=t2)  − 2.40(=t3)  -  

Fig. 2. (a) The electronic BS of HNC6 calculated by both DFT (solid red lines) 
and TB (broken blue lines) method. The Fermi level is set to zero. Only the 
upper valence band and lower conduction band are shown for TB calculations. 
(b) The projected density of states spectrum. 

Fig. 3. (a) The electronic BS of HNC6 for (a) E = 0.5 V/Å and (b) E = 1.0 V/Å 
calculated by DFT (solid red lines) and TB (broken blue lines) along with the 
DOS spectrum. The Fermi level is set to zero. 
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We have calculated the direction-dependent effective mass of the 
electrons and holes (mc and mv) of the structure in different electric 
fields by the quadratic polynomial fitting of the conduction and valence 
bands and is shown in Fig. 4b. Results show that the effective mass of 
both carriers and in direction K→Γ and K→M are nearly the same and 
indicate a parabolic nature with the minimum of the effective mass 
occurring at E = 0.375 V/Å. This behavior may arise due to non-linear 
change of the conduction band minimum and valence band maximum 
point (at K-high symmetric point) during the deformation of BS by the 
external field. This result is contrary to that obtained by Ni et al. using 
the TB method, which predicts a universal linear behavior [11]. The 
calculated minimum values of effective masses are mKΓ

c =0.0122m,

mKM
c =0.0124m,mKΓ

v =0.0127m and mKM
v =0.0120m, where m is the rest 

mass of free electron. We have also roughly estimated the mobility of the 
charge carriers of the unperturbed system and at the electric field E =
0.375 V/Å, using the relation μm = eτ/m*. Using this relation and 
considering the relaxation time to be in the order of graphene [55], the 
mobility of carriers in HNC6 is 105 cm2V− 1s− 1. This is of the same order 
of mobility of suspended graphene (μm ∼ 20,000 cm2V− 1s− 1) [56]. 

Since the thermoelectric and optical properties of a material depend 
on its band structure, which in turn can be modified by an electric field, 
both the properties also can be tuned in the presence of an external 
electric field. In the next two subsections, we explore the thermoelectric 
and optical properties of HNC6 in the presence of an electric field. 

3.3. Thermoelectric properties 

Recently, exploring new thermoelectric materials, are of great in
terest due to their ability to directly convert heat into electricity and vice 
versa with significant potential in industrial application [57–60]. The 
thermoelectric performance of the material is typically measured by 
different interconnected properties like electrical conductivity (σ), 
Seebeck coefficient (S), Power factor (σS2), the dimensionless thermo
electric figure of merit (ZT). The position of chemical potential (μ) along 
with temperature plays a pivotal role in transport properties. The deci
sive factor for determining which electrons in the valence or conduction 
bands take part in the electronic transport is dictated by the position of μ 
in the band structure, which can be manipulated by doping or substi
tution. Chemical potential is determined by the temperature and by the 
total number of carriers. The difference between chemical potential and 
Fermi energy μ − Ef is positive (negative) for electron (hole) doping. 

3.3.1. Electrical conductivity 
In Fig. 5(a-c), we have plotted the electrical conductivity divided by 

relaxation time (σ/τ) as a function of chemical potential at fixed tem
peratures for applied electric field E = 0.0, 0.5 and 1.0 V/Å, respectively. 
At zero electric field the electrical conductivity shows nearly symmetric 
behaviour at the vicinity of the Fermi level Ef similar to the DOS spec
trum. Due to the injection of carriers, σ/τ increases with the chemical 
potential and reaches maximum at a certain value for both n- and p- 
doped regions. The electrical conductivity for the p-doped region is 

more pronounced than the n-doped region. The maximum value of σ/τ 
obtained at room temperature are ∼ 6.643 × 1019 and ∼ 4.830 × 1019 

Ω− 1m− 1s− 1 at μ − Ef = − 0.827 and 0.813 eV, respectively. Moreover, at 
the vicinity of the Fermi level σ/τ also increases with temperature due to 
thermal excitations. At μ→Ef , σ/τ shows a small value and the values 
obtained are ∼ 5.010 × 1016 and ∼ 1.701 × 1018 Ω− 1m− 1s− 1 at 100 and 
700 K, respectively. 

In the presence of a finite external electric field, the behavior of the 
electric conductivity becomes asymmetric. The DOS spectrum shows a 
gapped behavior (zero DOS) around μ − Ef =0.0 and 0.6 eV, which is 
reflected in the electrical conductivity spectrum. The electrical con
ductivity at these narrow regions is vanishingly small and is of the order 
of ∼ 1014 Ω− 1m− 1s− 1 at 100 K. At sufficiently high temperatures the 
excited electrons and/or holes contribute to the conductivity. The peak 
positions in the electrical conductivity are consistent with the Van Hove 
singularities, as also reported in previous studies [61]. While σ/τ reaches 
a maximum value in the p-doped region for E = 0.5 V/Å, it reaches the 
maximum value (though outside the range of interest) at the n-doped 
region for E = 1.0 V/Å. The maximum value of the σ/τ in presence of a 
transverse electric field for both n- and p- doped regions are tabulated in 
Table 2. 

3.3.2. Seebeck coefficient 
Seebeck coefficient (S) is an important parameter determining the 

efficiency of a thermocouple. It also indicates the type of dominant 
carriers in a material: for p-type S is positive, while S is negative for n- 
type materials. We have shown the variation of S with chemical po
tential at different temperature for E = 0.0, 0.5 and 1.0 eV/Å in Fig. 6(a- 
c), respectively. In the absence of an electric field, the Seebeck coeffi
cient shows two pronounced peaks at the vicinity of the Fermi level for 
n-/p- type HNC6, which indicates that an efficient thermoelectric effi
ciency can be achieved at optimal carrier concentration. With the rise in 
temperature, however, the coefficient degrades due to the bipolar con
duction effect i.e. the excitation of positive and negative charge carriers 
[62]. The maximum of S obtained for hole-doped regime is 188.0 μVK− 1 

(at μ − Ef=-0.017) and 139.4 μVK− 1 (at μ − Ef=-0.113) at T = 100 and 
700 K, respectively. For electron-doped regime the values are 140.4 
μVK− 1 (μ − Ef=0.017), 109.8 μVK− 1 (μ − Ef=0.119) at T = 100 and 700 
K respectively. This suggests better performance at the hole-doped 
regime in absence of perturbation. 

The application of an external electric field increases the Seebeck 
coefficient significantly. Moreover, both the peaks in the vicinity of the 
Fermi level tend to shift towards the n-type region. At sufficiently large 
electric field (E = 1.0 V/Å) and low temperature T <300 K, both the 
peaks appear at the electron-doped regime. The behavior of the Seebeck 
coefficient can be explained with the DOS spectrum: The Seebeck co
efficient is zero when the chemical potential is at the middle of the 
valence and conduction band, as the electron and hole currents 
compensate each other. As μ − Ef moves towards the valence band or 
conduction band, the number of states accessible for transport is 

Fig. 4. (a) Bandgap Eg vs. electric field E calculated by DFT and TB method. (b) Effective mass of electrons and holes (mc and mv, respectively) with E along the 
direction K − Γ and K − M. 
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different on either side of Fermi energy, resulting in a large Seebeck 
coefficient. The magnitude of the Seebeck coefficient is strongly 
dependent on the bandgap and increases with the gap. Due to the same 
reason, the Seebeck coefficient also shows large values at the region 
around μ − Ef ∼ 0.6 eV for E = 1.0 V/Å. 

3.3.3. Power factor 
One of the keynote quantities for investigating the thermoelectric ef

ficiency is the power factor divided by relaxation time τ, defined as PF =

S2σ/τ. The calculated values of the PF is shown in Fig. 7(a-c) for E = 0.0, 
0.5 and 1.0 eV/Å, respectively. In the absence of an electric field and at 
low temperature (T⩽300 K), the PF for the n-type region is higher than the 
p-type region. However, with the increase in temperature, the PF for the 

Fig. 5. Variation of the electrical conductivity σ/τ with chemical potential μ − Ef at T = 100, 300, 500, 700 K for electric field strength (a) E = 0.0 V/Å (b) E = 0.5 V/ 
Å (c) E = 1.0 V/Å. 

Table 2 
Estimated bandgap and maximum values of different thermoelectric properties for p- and n- doped region in presence of applied electric field at room temperature.  

E(V/Å) Eg(eV)  σ/τ(× 1019)(Ω− 1m− 1s− 1) S(μVK− 1) PF(× 1010)(W/mK2s)  ZTel    

p-doped n-doped p-doped n-doped p-doped n-doped p-doped n-doped 

0.00 0.000 6.643 4.830 133.7 − 128.8 5.86 6.48 0.377 0.349 
0.25 0.019 7.013 3.959 154.0 − 144.3 10.31 5.00 0.447 0.394 
0.50 0.047 7.177 2.340 185.0 − 166.5 10.69 5.44 0.547 0.467 
0.75 0.087 6.995 2.018 243.3 − 225.9 13.34 12.56 0.678 0.573 
1.00 0.140 4.302 2.206 184.9 − 316.1 2.82 15.16 0.487 0.740  

Fig. 6. Variation of the Seebeck coefficient (S) with chemical potential μ − Ef at T = 100, 300, 500, 700 K for (a)E = 0.0 V/Å (b) E = 0.5 V/Å (c) E = 1.0 V/Å.  

Fig. 7. Variation of the Power factor (PF) with chemical potential μ − Ef at T = 100, 300, 500, 700 K for (a)E = 0.0 V/Å (b) E = 0.5 V/Å (c) E = 1.0 V/Å.  
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p-type region is significantly larger than the n-type region. The calculated 
maximum power factor for HNC6 at 100 K is 17.91×109 and 24.01×109 

W/mK2s for p- and n- doped region, respectively. At 700 K, the calculated 
values are 143.32×109 and 70.05×109 W/mK2s, respectively. The 
maximum of the PF arises due to the better trade-off between the Seebeck 
coefficient and electrical conductivity. The minimum of the PF is obtained 
for chemical potential where the Seebeck coefficient reverses its sign. 

The PF can be largely improved by the presence of external pertur
bation. Additionally, the magnitude of the electric field also decides, 
whether HNC6 will perform better as n-doped or p-doped. For example, 
up to E⩽0.75 V/Å the system performs better when p-doped, while n- 
doped regions show superior PF at E = 1.0 V/Å. 

3.3.4. Wiedemann Franz law and Figure of Merit 
We have calculated the Wiedemann–Franz (WF) ratio for HNC6 

structure for both in the presence and absence of an electric field. The 
WF law for ordinary metals states that, κe/σT = L =constant, where L 

is the Lorentz number. For ordinary metals L = L 0 = π2k2
B/3e2 =

2.44×10− 8 WΩK2. In Fig. 8, we have plotted κe/σT with temperature for 
E = 0.0, 0.5, 1.0 V/Å. This value is also independent of relaxation time τ. 
The Lorentz number L is nearly constant for E = 0.0V/Å and is ∼
9.441 × 10− 8 WΩK− 2. This value is nearly twice that of graphene (L G =

5.79 × 10− 8 WΩK− 2) [63], and four times that of the universal value 
L 0. These higher values of L can be attributed to the unusual nature of 
the band structure with Dirac fermions. In presence of an electric field, 
L is not constant and is dependent on temperature. Similar behavior is 
already predicted for materials with a gap[64]. Moreover, the values are 
higher than the unperturbed system. 

The efficiency of a thermoelectric material in a energy conversion 
process is determined by the dimensionless figure of merit (ZT) defined 
as, 

ZT =
σS2T

κel + κL
(14)  

ZT =
σS2T

κel

(
1

1 + κL/κel

)

=
ZTel

1 + κL/κel
(15)  

where ZTel = σS2T/κel is the electronic figure of merit, which provides 
the maximum value of the total figure of merit, and does not include the 
phononic contribution to the thermal conductivity. κel and κL is the 
thermal conductivity due to the electrons and lattice (phonons). The 
BoltzTraP code only calculates the electronic thermal conductivity and 
hence only information about ZTel can be obtained from this code. 

However, we have used a machine-learning interatomic approach to 
evaluate the lattice thermal conductivity which will shed light on the 
value of ZT of this material. Generally, high electrical conductivity and 
Seebeck coefficient, and low thermal conductivity will lead to large ZTel. 
In Fig. 9, we have shown the electronic figure of merit vs. chemical 
potential for different values of an external electric field. For the un
perturbed system, ZTel = 0.377 and 0.349 at room temperature. More
over, for E = 0.0 V/Å, ZTel ∝ S2, by virtue of Wiedemann–Franz ratio, L 

, which is nearly constant. A decrease in temperature increases ZTel, 
however, it is known that thermal conductivity is mainly dominated by 
κL at low temperature, hence it can be anticipated that ZT≪ZTel. 

In Fig. 10, we have depicted the lattice thermal conductivity of the 
HNC6 system as a function of temperature. We have also fitted the κL curves 
(see Fig. 10) to check the accurate temperature dependency. From the 
figures, it can be concluded that κL nearly maintains an inverse relationship 
with the temperature. The lattice thermal conductivity of HNC6 77.47 W/ 
mK, while for pristine graphene it is 14.1 W/mK (taking τ =3.0×10− 13sec 
for graphene) [66]. In the ESI, we have also shown (see Fig. S3) the vari
ation of κel for better comparison. Results suggest that the electronic part of 
thermal conductivity increases with temperature. However, increased 
electrical conductivity and the Seebeck coefficient lead to higher ZT than 
graphene. At much higher temperature κel > κL and hence ZT≲ZTel. The 
electronic figure of merit is found to increase with the applied electric field 
and at E =1.0 V/Å, ZTel is greater than unity at low temperature (T=100 K). 
The calculated values of ZTel at the room temperature for different applied 
electric fields for both n- and p-doping are tabulated in Table 2. The system 
will perform better when hole-doped at a small electric field (E⩽0.75 V/Å), 
an electron-doped at a sufficiently large electric field. We have also 
compared the maximum values of different thermoelectric properties of 
pristine HNC6 at room temperature with other 2D materials and are sum
marized in Table 3. However, taking into account the lattice thermal con
ductivity the value of the figure of merit is reduced to 0.02 at room 
temperature. The figure of merit tabulated in the table mainly provides the 
electronic contribution and is less in nearly all cases. Clearly, this structure 
shows better thermoelectric performance than graphene and can be more 
improved by applying a transverse electric field. 

3.4. Optical properties 

The electronic property of any system plays a pivotal role in deter
mining its optical properties. The tuning of the electronic properties by the 
application of a transverse electric field motivates us to investigate the 
optoelectronic properties of the system. We calculated the frequency- 
dependent optical properties like ∊2(ω), ∊1(ω), L(ω) of the systems in 
presence of both the transverse external electric field and polarised elec
tromagnetic field. The optical properties have been calculated in the three 
directions of polarization viz. x-, y-, and z-direction. Due to structural 
anisotropy ∊x = ∊y ∕= ∊z, we present result only for the parallel (Ep‖x or y) 
1 and perpendicular (Ep⊥x or Ep‖z) type. 

In Fig. 11(a) and (b), we present the imaginary part of the dielectric 
function (∊2(ω)) as a function of photon energy (ω) in presence of 
external applied electric field for Ep‖x and Ep⊥x, respectively. The 
dielectric function is prominent in the frequency range ω= 0–4 eV and 
0–18 eV for Ep‖x and Ep⊥x, respectively. A strong anisotropy is observed 
in the optical response between the two types of polarization due to the 
two-dimensional nature. The imaginary part of the dielectric function 
shows a major peak around ω ∼ 0.12 eV, which is slightly blue-shifted 
with the rise of E. Further, the intensity of this peak decrease with the 
applied field strength. A minor peak also emerges with the increase of 
electric field (E⩾0.5 eV/Å) in the IR region. The peak positions reported 
are 1.42, 1.22 and 1.08 eV for E = 0.5, 0.75 and 1.0 eV/Å, respectively. 

Fig. 8. Temperature dependence of κe/σT = L for E = 0.0, 0.5, 1.0 V/Å. The 
red line represents the least square fit for the pristine unperturbed system. The 
black and magenta dotted line represents the universal value of Lorentz number 
(L 0) and the value of L for graphene (L G). 

1 We have used Ep to represent the electric field of the incident polarised 
light, and E for the applied external electric field. 
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These peaks normally arise due to π-π* band transition. The HNC6 
structure shows no response in the UV region of the EM spectrum. For 
Ep⊥z, several peaks are observed for ∊2(ω). In absence of an external 
electric field, two prominent peaks appear at 2.42 and 13.84 eV. The 
first peak may arise due to π − π* interband transition, while the broad 
second peak is due to σ − σ* transition. The application of electric field 
splits the first peak into two peaks: A sharp low energy peak appears at 
ω=1.02 − 1.68 eV, while the other appears at ω=2.38–3.28 eV. The 
lower energy peaks are red-shifted, while the other peak is blue-shifted 
with the increase of the external electric field. Further, the intensity of 
the sharp peak increases with E. At E = 1.0 V/Å, the low energy second 
peak again tends to split into two similar peaks at 2.92 eV and 3.28 eV. 
The broad peak in the far UV region appears in the frequency range 
ω=13.52 − 13.84 eV. The strong response of ∊2(ω) in the IR region 
suggests that this material may find its application in the solar cell. 

The real part of the dielectric function provides information about 
the amount of energy stored in the system and plays a key role in 
determining the collective role of free electrons. The variation of ∊1(ω)

with frequency for different applied electric field is shown in Fig. 12(a) 
and (b) for both parallel and perpendicular polarization, respectively. 
Our study reveals that the static real part of the dielectric constant for 
Ep‖x is large (∊1(0) ∼ 28.89) for the pristine system in absence of an 
electric field. This value is nearly 8 times larger than pristine graphene 
[65]. With the application of the electric field E, ∊1(0) decreases and 
reaches ∼ 22.14 for E = 1.0 V/Å. Contrary, ∊1(0) for Ep⊥x increases with 
the applied electric field and is much smaller than Ep‖x . The calculated 
values for E = 0.0, 0.25, 0.5, 0.75 and 1.0 V/Å are ∊1(0)=1.61, 1.77, 
2.06, 2.44 and 2.84, respectively. The presence of a large number of free 
carriers results in non-zero ∊1(0). The decrease in ∊1(0) by application of 
electric field can be attributed to the transition from semi-metallic to 
semiconducting characteristics. Thus this carbon-based material has a 
significantly higher value of ∊1(0) and can be tuned by the application of 
an electric field. For both polarization, the dielectric function increases 
beyond the zero-frequency limit to its maximum value and then sharply 
decreases. ∊1(ω) then has few noticeable fluctuations and ultimately 

Fig. 9. Variation of the electronic Figure of merit (ZTel) with chemical potential μ − Ef at T = 100, 300, 500, 700 K for (a)E = 0.0 V/Å (b) E = 0.5 V/Å (c) E = 1.0 V/Å.  

Fig. 10. Lattice thermal conductivity (κL) of HNC6 as a function of temperature.  

Table 3 
Comparative study of the various thermoelectric properties of few 2D materials 
at room temperature.  

Structure[Ref.] σ/τ (Ω− 1m− 1s− 1) S(μVK− 1) S2σ/τ (W/mK2s)  ZT 

Graphene [66] 0.33× 1019  31 0.3× 1010  0.08 

Silicene [67] - - - 0.36* 
Germanene [67] - - - 0.41* 
T-Silicene [68] 4.52× 1019  73 9.3× 1010  0.16* 

MoS2[69]  1.25× 1019  550 42.0× 1010  0.70 

Be3C2[61]  2.96× 1019  151 2.68× 1010  0.33* 

HNC6
† 6.64× 1019  134 6.48× 1010  0.38* 

HPC6
† 10.71× 1019  234 14.1× 1010  0.64* 

HAsC6
† 9.54× 1019  392 14.2× 1010  0.86*  

† This work. 
* Indicates electronic figure of merit ZTel. 
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becomes smooth. A negative value of the real part is observed in the far 
IR to the visible region of the EM spectrum for only parallel polarization 
which denotes the optically metallic character of HNC6. The intensity of 
the peak in the negative region increases with E. 

The plasma frequencies (ωp), which corresponds to the collective 
excitation of the electrons, can be predicted from the peak in the EELS 
curve, which corresponds to plasmon resonance. The EEL spectrum is 
depicted in Fig. 13. The EELS shows a major peak in the visible region of 
the EM spectrum, with few small surrounding minor peaks for Ep‖x. The 
calculated plasma frequency for parallel polarization are ωp=3.26, 3.36, 
3.44, 3.76, 3.40 eV for E = 0.0, 0.25, 0.50, 0.75, 1.0 V/Å. A strong in
tensity peak is also evinced for perpendicular polarization in the far UV 
region, along with a few minor sharp peaks in the IR region to the visible 
region. The plasma frequencies for both parallel and perpendicular po
larization are tabulated in Table 4. 

4. Salient features of other carbon-based isoelectronic 
structures 

Similar to HNC6 monolayers, HPC6 and HAsC6 shows similar struc
tural and electronic properties with N replaced by P and As. These two 
structures are also stable as predicted by Lu et al. [17] and possesses 
Dirac points at the K-high symmetric point (Fig. 14a) with maximum 
Fermi velocity 5.97 ×105 m/s and 6.23 ×105 m/s, respectively. Since 
these structures are also buckled, the application of an external electric 
field leads to a bandgap opening at the K point. However, the gap 
opening is smaller than HNC6 and decreases with the atomic weight of 
the group-V element. For all the structures the gap increases with the 
external field, though a drop in bandgap while going beyond 0.8 V/Å in 

the case of HAsC6 is notable. This may be due to the high atomic weight 
of As, at a high electric field outer electrons could be disrupted which 
effectively reduces the polarization due to the electric field and hence 
the decrease in the bandgap. We have shown the variation of bandgap 

Fig. 11. Imaginary part of the dielectric function ∊2(ω) as a function of photon 
energy ω for (a) Ep‖x (b) Ep⊥x. Fig. 12. Real part of the dielectric function ∊1(ω) as a function of photon en

ergy ω for (a) Ep‖x (b) Ep⊥x. 

Fig. 13. Electron energy loss spectra (EELS) L(ω) as a function of photon en
ergy ω for (a) Ep‖x (b) Ep⊥x. 

Table 4 
Plasma frequency (ωp in eV) for HNC6 structure for different electric field (E in 
V/Å ) for parallel (Ep||x) and perpendicular (Ep⊥x) polarizations.  

E Ep‖x  Ep⊥x  

0.0 3.26 2.48, 16.65 
0.25 3.36 1.72, 2.66, 16.08, 16.72 
0.50 3.44 1.50, 2.54, 15.87 
0.75 3.76 1.46, 2.74, 15.65 
1.0 3.40 1.50, 3.34, 16.05  
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with applied external electric field in Fig. 14b. We have further studied 
the thermoelectric properties of the HPC6 and HAsC6 structures in 
absence of an electric field. The maximum values of the thermoelectric 
parameters are tabulated in Table 3. These two structures also perform 
better when hole-doped. Moreover, the thermoelectric performance of 
the materials is largely improved by altering the group-V element i.e. 
increases with the increase of atomic weight. For example, the calcu
lated electronic figure of merit for 0.64 and 0.86 for HPC6 and HAsC6, 
respectively at room temperature. In the Electronic Supplementary In
formation (ESI), we have also shown (see Fig. S2) the κL values for the 
other two systems. From the Figures, it can be noticed that the lattice 
thermal conductivity is highest for the HAsC6 system and lowest for the 
HNC6 system. This is due to the mass difference. Here the most massive 
system is the HAsC6 system because of the presence of As atoms and the 
least massive is the HNC6 system because of N. Generally more massive 
the system is, less its lattice thermal conductivity. This trend is visible 
here. Considering the lattice thermal conductivity, the figure of merit is 
0.04 and 0.18 for HPC6 and HAsC6, respectively. Similar to HNC6, also 
both the structures show better thermoelectric performance with the 
application of an electric field. 

We have also determined the optical response of HPC6 and HAsC6, in 
terms of ∊2(ω) for both Ep‖x and Ep⊥x in Fig. 15. Both the structures 
show similar optical responses with HNC6. The peak in the IR region for 
Ep‖x appears at the same frequency, with the intensity slightly 
decreasing with the atomic weight of B-atom. For E⊥x, the peak height 
of HPC6 is maximum and the peak position of HNC6 and HAsC6 lies on 
either side of HPC6. Since all other optical properties are calculated from 
∊2, we can expect that the behavior of other properties will also show a 
similar response like HNC6. 

The intriguing electronic, thermoelectric, and optical properties of 
these monolayers may be interesting for experimentalists and find their 
application in nanoelectronic, energy conversion, and optical devices. 

5. Conclusion 

In summary, we systematically examine the effect of transverse 
electric field on the electronic, thermoelectric and optical properties of 
buckled hexagonal HNC6 monolayers. We employ both first-principle 
calculation as well as a tight-binding model to tune the band by the 
perturbation. In the absence of perturbation, HNC6 is a semi-metal with 
a Dirac cone at K point, and Dirac point is rather robust with the vari
ation of hopping energy. With the application of electric field, both DFT 
and TB calculations show bandgap opening, which increases with the 
field strength. The N atoms play a crucial role in the existence of the 
Dirac cone as well as in the band-gap opening. The electrical conduc
tivity, the figure of merit, and the power factor of the unperturbed HNC6 
are found to be much higher than graphene at room temperature, which 
suggests HNC6 as a better material for its performance in thermoelectric 
devices over graphene. The application of electric field largely improves 
the thermoelectric properties of HNC6. The electric field strength also 
determines whether the system will behave better when p- or n- doped. 

The structure shows a strong optical response in the IR and visible region 
for parallel polarization, while for perpendicular polarization the 
response is in the IR and deep UV region. A sharp peak in ∊2 appears in 
the IR region for both types of polarization. A small peak in ∊2(ω) ap
pears in the visible region for Ep‖x with the application of electric field 
and are red-shifted with the field strength. The major plasma frequency 
appears in visible region for Ep‖x, while in the IR and deep UV region for 
Ep⊥x. The P and As analogue of HNC6 also show similar behavior with 
more improved thermoelectric properties. In the presence of an electric 
field, the thermoelectric performance of these two materials rises sub
stantially. The optical properties of these classes of hexagonal HAC6 
materials show similar behavior. All these intriguing properties of HAC6 
materials may be interesting for experimentalists for their synthesis and 
application in different nano-devices. 
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