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A B S T R A C T

We report an exact diagonalization study of strongly correlated electron–phonon (EP) systems like doped polar
insulators within the framework of the polaronic 𝑡 − 𝐽𝑝 model considering realistic long-range Coulomb and
EP (Fröhlich) interactions on linear and square clusters. For a small ratio of polaronic hopping amplitude
(𝑡) and exchange interaction (𝐽𝑝), polarons predominantly occupy the nearest-neighbor (NN) position with
NN spin–singlet pairing (𝑑-wave type). With the increase in the 𝑡∕𝐽𝑝 ratio, bipolaron size increases and finally
becomes large and constant depending on the lattice size. The crossover from small to large bipolaron is nearly
independent of system size but depends on the cluster geometry. Bipolaron effective mass and kinetic energy
calculation show that at 𝑡∕𝐽𝑝 ∼ 0.3, light and small bipolarons are perfectly mobile. In linear chain, bipolaron
composite is formed within a region of 0 < 𝑡∕𝐽𝑝 < 0.5. Results suggest the existence of the superconducting
phase at the vicinity of 𝑡∕𝐽𝑝 ∼ 0.3.

1. Introduction

The study of strong electron–electron (𝑒 − 𝑒) correlation along with
electron–phonon (EP) interaction remains an intriguing many-body
problem. It is widely believed that the most relevant features of a
strongly correlated electron system are due to the interplay between
these two competing interactions. For example, the spin fluctuations
induced by strong 𝑒−𝑒 interactions in high-𝑇𝑐 cuprates mediate pairing
between electrons to produce anisotropic Cooper pairs for supercon-
ducting condensation [1]. On the other hand, isotropic Cooper pairs are
formed by phonon-mediated attraction leading to condensation to su-
perconducting states. The presence of ‘kinks’ in the angle-resolved pho-
toemission spectrum gives strong evidence of EP interaction in high-𝑇𝑐
cuprates [2]. In addition to high-𝑇𝑐 cuprates, sizeable EP interaction is
also found to be present in different materials like Colossal magneto-
resistance manganites [3], fullerenes [4], magnesium diborides [5],
etc.

The basic models to study the properties of strongly correlated
systems with these competing interactions are the Hubbard–Holstein
and Holstein-𝑡𝐽 model [6]. The phenomena of the high-𝑇𝑐 supercon-
ductivity in cuprates were addressed both analytically [7] and numer-
ically [8] in the framework of these two models [9] considering short-
range electron–phonon interaction. A more realistic Coulomb–Fröhlich
model considering long-range interactions was also proposed [10] and
studied in the context of high-temperature superconductivity [11–13].
The relative strength of the long-range EP interaction and Coulomb
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repulsion determine whether the system is Fermi- or (Luttinger) liquids,
bipolaronic superconductors or charge segregated insulators. Results
show that relatively weak long-range EP interaction induces 𝑑-wave
superconducting phase in doped Mott–Hubbard insulators without the
necessity of additional mechanisms like spin fluctuation. It has been
argued that the low Fermi energy and strong EP coupling with high-
frequency phonons are the roots of high critical temperature in cuprate
superconductors [12].

A polaron, charge carrier dressed by phonon clouds, and bipolarons
(polarons bound by phonon-mediated interaction), are studied and
of interest in the context of high 𝑇𝑐 superconductivity [8,14–17].
Though bipolarons are spin singlet (polarons of opposite spin binding
together), the existence of spin–triplet inter-site bipolarons is confirmed
by studies on heavy-fermion superconductivity [18,19]. In the limit
of low bipolaron density, the excitation spectra are superfluid with
the bipolarons being superconducting [7]. It has been suggested that
Bose–Einstein Condensation (BEC) of these bipolarons may lead to
superconductivity in some high-𝑇𝑐 materials [20,21]. The existence of
‘superlight small bipolarons’, which are real-space hole pairs dressed by
phonons in doped charge-transfer Mott insulators, have been suggested
as the possible ground-state of high-𝑇𝑐 cuprates [22,23]. The interaction
between the bipolarons has also been investigated using Fröhlich–
Hubbard model on a discrete 1D lattice. While no bipolaron–bipolaron
attraction exists in the Hubbard–Holstein model, an attraction between
bipolarons exists in the extended Holstein–Hubbard model [24]. If
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the bipolarons are small and are well separated relative to their size,
they may condensate to form BEC of bipolarons with the transition
temperature determined by the size/effective mass of the bipolarons.
Hence, the study of the properties of the bipolarons and interaction be-
tween them will be of interest to understand the possible mechanism of
high-𝑇𝑐 superconductivity and different properties of the other strongly
correlated materials.

A polaronic 𝑡−𝐽𝑝 model, with a short-range polaronic spin-exchange
𝐽𝑝 of phononic origin, for highly polarizable ionic lattices like cuprates
and other oxides like 𝐵𝑎𝐾𝐵𝑖𝑂3 was also proposed [25]. It was argued
that in the limit where bare long-range Coulomb and Fröhlich EP
interactions negate each other, giving rise to the 𝑡 − 𝐽𝑝 Hamiltonian.
At low density, it was established that the ground state of this model
to be bipolaronic singlet with a superconducting phase transition at a
temperature well above 100𝐾 [26,27]. Thus, it can be expected that this
model can extract the essential features of high 𝑇𝑐 superconductivity
and hence require further study.

Inspired on these theoretical and experimental findings, we will
report the formation of different types of bipolarons based on the 𝑡−𝐽𝑝
model which is an approximation of the realistic model considering
long-range Coulomb and EP interactions in the strong coupling limit in
1D and 2D. We aim to identify and investigate the region of parameter
range preferable for the formation of bipolarons of different sizes
and masses, their mobility, interactions among each other and pairing
correlation which might support superconductivity in high 𝑇𝑐 cuprates.

2. Hamiltonian

The microscopic model for investigating strongly correlated real ma-
terials simply considers the direct interaction between charge carriers
(𝑒−𝑒 interaction) and indirect interaction via lattice vibration (Fröhlich
EP interaction). The model Hamiltonian can be written as

𝐻 = −
∑

(𝑖,𝑗)𝜎
𝑇𝑖𝑗 (𝑐

†
𝑖𝜎𝑐𝑗𝜎 + ℎ.𝑐.)

+
∑

(𝑗>𝑖)𝜎𝜎′
𝑉𝑖𝑗 𝑛̃𝑖𝜎 𝑛̃𝑗𝜎′

−𝜔0
∑

(𝑖,𝑗)𝜎
𝑔𝑖𝑗 𝑛̃𝑖𝜎 (𝑎

†
𝑗 + 𝑎𝑗 )

+𝜔0
∑

𝑗
𝑎†𝑗𝑎𝑗 (1)

where 𝑖, 𝑗 represent the position of the particles. The first term is the
electron hopping term with 𝑇𝑖𝑗 as bare hopping amplitude, second
term represents long range Coulomb repulsion with 𝑉𝑖𝑗 as interaction
strength, third term is the coupling of an electron at site 𝑖 with an ion
at site 𝑗 with 𝑔𝑖𝑗 as the dimensionless coupling strength and the fourth
term is the phonon degrees of freedom. Here 𝜎 represents spin and we
set ℏ = 1.

Well known Lang–Firsov transformation [28], transforms the Hamil-
tonian 𝐻𝐿𝐹 = 𝑒𝐴𝐻𝑒−𝐴 where 𝐴 = −

∑

(𝑖,𝑗),𝜎 𝑛̃𝑖𝜎𝑔𝑖𝑗 (𝑎𝑗 − 𝑎†𝑗 ). This
transformation displaces the simple harmonic oscillators and effectively
negate the long-range interactions ((𝑉𝑖𝑗 − 𝜔0

∑

𝑙 𝑔𝑖𝑙𝑔𝑗𝑙) ∼ 0).

𝐻𝐿𝐹 = −
∑

(𝑖,𝑗)𝜎
𝑇𝑖𝑗 (𝑋

†
𝑖 𝑋𝑗𝑐

†
𝑖𝜎𝑐𝑗𝜎 + ℎ.𝑐.)

+𝜔0
∑

𝑗
𝑎†𝑗𝑎𝑗 (2)

with 𝑋𝑗 = 𝑒𝑥𝑝[−
∑

𝑝 𝑔𝑗𝑝(𝑎
†
𝑝 − 𝑎𝑝)]. It has been shown [25] that in

the strong coupling limit this model can be reduced to a polaronic
model with a hopping term describing the motion of strongly correlated
polarons and a spin-exchange between polarons on different sites. The
Hamiltonian has the following form

𝐻𝑡−𝐽𝑝 = −
∑

(𝑖,𝑗)𝜎
𝑡𝑖𝑗 (𝑐

†
𝑖𝜎𝑐𝑗𝜎 +𝐻.𝑐.)

+ 2
∑

(𝑗>𝑖)
(𝐽𝑝)𝑖𝑗 (𝑆𝑖.𝑆𝑗 +

1
4
𝑛𝑖𝑛𝑗 ) (3)

where 𝑡𝑖𝑗 = 𝑇𝑖𝑗𝑒𝑥𝑝(−𝑔2𝑖𝑗 ) is the polaronic hopping amplitude, (𝐽𝑝)𝑖𝑗 =
𝑇 2
𝑖𝑗∕2𝜔0𝑔2𝑖𝑗 represents the spin-exchange interaction between polarons.
𝑆𝑖 is the spin- 12 operator defined in terms of the Pauli matrices as:
𝑆𝑖 =

∑

𝜎𝜎′ 𝑐
†
𝑖𝜎𝜏𝜎𝜎′ 𝑐𝑗𝜎′ and 𝑛𝑖 =

∑

𝑖𝜎 𝑐
†
𝑖𝜎𝑐𝑖𝜎 is the density operator.

All the quantities in the polaronic 𝑡 − 𝐽𝑝 Hamiltonian are defined
through the material parameters [25], in contrast to the input param-
eters in most of the previous studies of strongly correlated EP systems.
The kinetic term in Eq. (3) describes the motion of fermions under
a strong correlation in the presence of long-range Coulomb and EP
interactions resulting in polaronic band narrowing. The second term is
the spin-exchange term, with 𝐽𝑝 describes the spin-exchange between
carriers and is responsible for the two-particle bound state.

Though the 𝑡−𝐽𝑝 hamiltonian looks similar to the well-known 𝑡−𝐽
Hamiltonian [29], they have wide differences. While double occupancy
is prohibited in the later model, there is no constraint in the double
occupancy in the 𝑡 − 𝐽𝑝 model. Also, there is a ‘+’ sign instead of ‘–’
sign in the last term which provides repulsion between the pairs.

3. Formulation

Our study follows the exact diagonalization (ED) method [30] on
1D and 2D lattice clusters of varying size and number of particles.
Though the results obtained by the ED method are exact and approxi-
mation free, the main limitation lies in the restriction of the choice of
cluster size. We present our work on an 8-,10-, 18- and 26-site cluster
(Supplementary item Fig. 1) [31] for 2 particles (for both 1D and 2D)
and 18-site for 4 particles system (only 1D) with periodic boundary
conditions.

In this paper, we restrict the range of interaction up to nearest
neighbor only and set 𝑡𝑖𝑗 = 𝑡 and (𝐽𝑝)𝑖𝑗 = 𝐽𝑝. We first calculate the
probability (correlation) of finding two polarons at a different site
as [14,32]:

𝑃 𝑠𝑏𝑝(|𝑖 − 𝑗|) = ⟨𝜓0|
∑

𝜎
𝑛𝑖,𝜎𝑛𝑗,−𝜎 |𝜓0⟩ (4)

𝑃 𝑡𝑏𝑝(|𝑖 − 𝑗|) = ⟨𝜓0|
∑

𝜎
𝑛𝑖,𝜎𝑛𝑗,𝜎 |𝜓0⟩ (5)

where 𝑃 𝑠𝑏𝑝(|𝑖 − 𝑗|) and 𝑃 𝑡𝑏𝑝(|𝑖 − 𝑗|), represent the correlation between
antiparallel (𝑆𝑧 = 0, singlet) and parallel (𝑆𝑧 = 1, triplet) orientation
of spins between the polarons respectively. In parallel orientation of
spins, 𝑖 = 𝑗 is not considered due to Pauli exclusion principle. |𝜓0⟩ is
the ground state wave function.

We then estimated the size of the bipolaron by

𝑅𝑏∕𝑎 =
∑

𝑖𝑗,𝛼
𝑃 𝛼𝑏𝑝(|𝑖 − 𝑗|) × (|𝑖 − 𝑗|)∕

∑

𝑖𝑗,𝛼
𝑃 𝛼𝑏𝑝(|𝑖 − 𝑗|) (6)

Here |𝑖 − 𝑗| is the distance between two sites measured in the units of
the lattice constant 𝑎 and 𝛼 stands for spin singlet (𝑠) and spin triplet
(𝑡).

The mobile bipolarons, which may indicate the presence of super-
conductivity, if any, is calculated in terms of energy dispersion rela-
tion for bipolarons. For this we have used Singlet-Subspace projection
method. The singlet basis is defined as:

For on-site pair (𝑑 = 0)

|0, 𝑘⟩ = 1
√

𝑁

∑

𝑗
𝑒𝑖𝑘𝑎𝑗𝑐†𝑗↑𝑐

†
𝑗↓|0⟩ (7)

For inter-site pairing

|𝑑, 𝑘⟩ = 1
√

2𝑁

∑

𝑗
𝑒𝑖𝑘𝑎(𝑗+𝑑∕2)(𝑐†𝑗↑𝑐

†
𝑗+𝑑↓ − 𝑐

†
𝑗↓𝑐

†
𝑗+𝑑↑)|0⟩ (8)

𝑑 is the spacing between two particles, |0⟩ is the vacuum state. Using
these basis the 𝑡 − 𝐽𝑝 Hamiltonian can be represented in tri-diagonal
form whose eigenvalues determine the energy dispersion 𝐸(𝑘). We have
evaluated the bipolaron effective mass

𝑚∗
𝑏𝑖 = ℏ2∕( 𝜕

2𝐸
𝜕𝑘2

)𝑘=0 (9)
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and correlated the result with bipolaron kinetic energy by ED calcula-
tion. For linear chain

𝐾𝐸1𝐷
𝑏𝑖 = −𝑡⟨𝜓0|

∑

(𝑖,𝑗),𝜎
(𝑐†𝑗+1𝜎𝑐

†
𝑗𝜎′ 𝑐𝑖+1𝜎𝑐𝑖𝜎′ + ℎ.𝑐.)|𝜓0⟩ (10)

where (𝑖, 𝑗) extends up to nearest-neighbor sites.
To search for the nature of pairing of the polarons pairs and possible

superconducting phase, if any, we have calculated the on-site singlet
pair and neighboring site singlet pair correlation function (𝑠-wave and
𝑑-wave in higher dimensions [33])respectively by:

𝑃𝑠 = ⟨𝛴†
𝑖 𝛴𝑗⟩ (11)

𝑃𝑑 = ⟨𝛥†𝑖 𝛥𝑗⟩ (12)

with 𝛴𝑖 = 𝑐𝑖↑𝑐𝑖↓ and 𝛥𝑖 = 1
√

2
(𝑐𝑖↑𝑐𝑖+1↓ − 𝑐𝑖↓𝑐𝑖+1↑). For the rest of the

paper we will call on-site and NN site singlet pairing as 𝑠− and 𝑑−
wave pairing respectively.

Finally, to observe the clustering of bipolarons (formation of bipo-
laron composite) in the ground state, we calculate the bipolaron–
bipolaron binding energy in terms of [14,32]

△4 = 𝐸4
0 − 2 × 𝐸2

0 (13)

where 𝐸𝑛0 is the ground state energies of 𝑛 polarons.
In this communication, we study EP interaction at intermediate

(𝑡 <∼ 𝐽𝑝) to extreme strong coupling (𝑡 ≪ 𝐽𝑝) in the framework of the 𝑡−
𝐽𝑝 model. We report the possibility of binding of two bipolarons along
with the existence of superconductivity and/or Bose–Einstein Conden-
sation. The crossover between different types of bipolarons is also
investigated. We take 2, 4 particle systems, with equal up and down
spins, to investigate the rich physics of the polarons and bipolarons and
the interactions between them based on the 𝑡−𝐽𝑝 model. Systems with
higher particle density are not of interest as superconductivity due to
bipolarons appears at low bipolaron density [7].

4. Results and discussions

4.1. Ground state energy

We first compare a few initial observations with the existing works
to validate the assumptions and procedures of our work. We first
observe the variation of the ground state energy (𝐸0) with 𝑡∕𝐽𝑝 for
the two polaron systems on 8-, 10-, 18-, 26-site linear and square
lattice. The results are plotted in Figs. 1(a) and 1(b). Though larger
clusters are always preferable over 18 or 26 sites, the storage of the
basis state configuration, as well as computational limitations due to
an exponential growth of Hilbert space, impose a serious restriction
on the study of larger clusters. Results for both 1D and 2D indicate
that the qualitative behavior of the ground state energy with 𝑡∕𝐽𝑝 for
different cluster sizes are similar and is in good agreement with the
previous results in 1D. Moreover, the maximum variation of ground
state energy of our 8-, 10- and 18-site chain with respect to 26 sites
linear chain (See ESI Table 1) is 5.95%, 3.74% and 0.75% respectively.
Thus it can be argued that the finite size effect of the 26-site chain
will be small concerning even larger clusters. Moreover, the choice of
larger clusters will require sufficiently large computational time and
space. Thus our results on 26- and/or 18-site clusters are sufficient to
study this system efficiently with nearly negligible finite size effect. We
also obtain a highly degenerate two-particle energy level of the model,
in agreement with the previous work [26]

𝐸0(𝑡 = 0) = −𝐽𝑝, 𝐸1(𝑡 = 0) = 0, 𝐸2(𝑡 = 0) = 𝐽𝑝 (14)

These values of the 2-particle energy states at 𝑡 = 0 are inde-
pendent of cluster size and geometry. Interestingly, the degeneracy
of the ground state and highest energy states, corresponding to the
bipolaronic spin–singlet and triplet state respectively, is equal to and
twice equal to the number of sites for 1D and 2D respectively.

Fig. 1. Two particles ground state energy 𝐸0 as a function of hopping for different
size of the cluster. (a) linear chain and (b) tilted square cluster.

Fig. 2. Probability of finding two polarons at different distances in the ground state,
in the unit of lattice constant. NN site probability is shown in bold. (a) Linear chain
(b) tilted square lattice.
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Fig. 3. Bipolaron size 𝑅𝑏 versus 𝑡∕𝐽𝑝 in the unit of lattice constant for three different
cluster size. Three different regions corresponding to size of the bipolarons are shown.
(a) Linear chain (b) 2D tilted cluster.

4.2. 2-particle case

We now first consider the correlation between two polarons 𝑃𝑏𝑝
(|𝑖 − 𝑗|) at different sites which also measures the probability of finding
two particles at different sites in the system. In Figs. 2(a) and 2(b),
variation of two polarons (𝑝 − 𝑝) correlation function with 𝑡∕𝐽𝑝 for
1D and 2D systems are plotted respectively on a 26-site lattice us-
ing Eq. (4). Results clearly show that for 𝑡∕𝐽𝑝 = 0.0, the probability of
finding the two polarons are strictly at NN sites, which is independent
of the geometry and size of the system (not shown). A strong correlation
between polarons at NN sites and negligible correlation at other sites
suggest the formation of inter-site singlet bipolarons with the binding
energy 𝐽𝑝. Since the system is spin–singlet at the ground state, the
formation of triplet state bipolarons is not be observed at the ground
state.

For the linear chain, the probability of finding two particles at the
NN site decrease gradually while it increases for NNN and other sites
with an increase in hopping. In the range 0 < 𝑡∕𝐽𝑝 < 0.5, a small finite
probability of finding the polarons at NNN and larger distant sites is
observed. At 𝑡∕𝐽𝑝 ∼0.5, the probability of finding the polarons at all
sites is equal and for higher 𝑡∕𝐽𝑝 the probability of finding the polarons
at different sites gets reversed. For 𝑡∕𝐽𝑝 ≥ 0.5, the probability of finding
two-polarons at all distances is small with maximum probability occurs
for the largest separation determined by lattice size. However, for the
2D tilted square cluster, the probability of finding two particles at
the NN site decreases sharply with 𝑡∕𝐽𝑝 and reaches to a very small
value at 𝑡∕𝐽𝑝 = 0.2. For 𝑡∕𝐽𝑝 > 0.2, a small finite probability of
finding the particles is observed for all sites and tends to maintain
maximum separation available. For both cases, with the increase of
particle hopping, the particles tend to move at distant sites from the
NN site leading to the breakdown of NN site bipolarons. The magnitude

of 𝑡∕𝐽𝑝 at which small inter-site bipolarons splits into separate polarons
can be marked as a critical value for the formation of small inter-site
bipolarons.

In Figs. 3(a) and 3(b), we plot the average separation distance
between two polarons with 𝑡∕𝐽𝑝 for 10-, 18-, 26-site linear chain
and square cluster respectively. This distance can be considered as a
measure of the size of the bipolarons and is quite different from the
𝑏𝑖𝑝𝑜𝑙𝑎𝑟𝑜𝑛 𝑟𝑎𝑑𝑖𝑢𝑠. At 𝑡∕𝐽𝑝 = 0.0, for both 1D and 2D, the bipolaron size
is small and the polarons are strictly separated by one lattice spacing
consistent with Fig. 2. One can call this bipolaron as a small inter-
site bipolaron. With the increase of 𝑡∕𝐽𝑝, the bipolaron size increases
gradually and at a certain critical value, the size increases sharply to a
large value depending on lattice size. With a further increase of 𝑡∕𝐽𝑝,
the bipolaron size becomes constant. As the available linear distances
between two polarons are greater in 1D, so bipolaron size is larger in
1D for large 𝑡∕𝐽𝑝. The calculation on a 10-, 18-, and 26-site shows the
two polarons tends to maintain maximum separation depending on the
system size for 𝑡 ∼ 𝐽𝑝. This constant value of the bipolaron size indicates
the existence of large type bipolarons or nearly free polarons with
little renormalization among them. Thus the size of the lattice confines
the size of the large bipolarons or the separation of the polarons. The
critical value of 𝑡∕𝐽𝑝 (𝑡∕𝐽𝑝 ∼ 0.5 and 0.2 for 1D and 2D (26-site)
respectively), which marks the crossover from small inter-site bipolaron
to large bipolaron is independent of the lattice size but dependent on
cluster geometry. A very small variation of this critical value of 𝑡∕𝐽𝑝
is obtained for different sizes of 2D systems which may be attributed
to the varying geometries of 2D clusters. Three regions can be easily
identified based on the bipolarons radius. (a) Region I, 𝑡∕𝐽𝑝 < 0.3(1D)
and 0.1(2D) small inter-site bipolaron of size strictly of the order of one
lattice spacing. (b) Region II, 0.3 ≤ 𝑡∕𝐽𝑝 ≤ 0.52 (1D) and 0.15 ≤ 𝑡∕𝐽𝑝 ≤
0.2 (2D) marks the transition region from small inter-site bipolaron to
large bipolaron. (c) Region III, 𝑡∕𝐽𝑝 > 0.52(1D) and 0.2(2D) polarons are
distant apart depending on lattice size and dimension−large bipolarons
or nearly free polarons. The formation of similar stable bipolarons
has also been observed recently considering Coulomb repulsion and
ions oscillations using a 1D continuum model [34], in contrast to
our discrete model. They have shown that stable translation-invariant
bipolarons exist below a certain critical strength of interactions.

Mobile bipolarons are one of the important parameters for the
existence of superconductivity [35]. In Fig. 4(a), we plot the energy
dispersion of bipolaron for different 𝑡∕𝐽𝑝. Effective mass is calculated
from the graphical analysis of Fig. 4(a) and using Eq. (9). Bipolaron
to polaron effective mass as a function of the ratio 𝑡∕𝐽𝑝 is shown
in Fig. 4(b). It is immediate from the graph that 𝑚∗

𝑏𝑖 ∼ 2𝑚∗
𝑝 in the

region 𝑡∕𝐽𝑝 ∼ 0.3. The variation of bipolaron kinetic energy with
𝑡∕𝐽𝑝 (Fig. 4(c)) in 1D shows that kinetic energy of the bipolarons
follow a nearly parabolic form in the range 0 < 𝑡∕𝐽𝑝 < 0.5, with
a maximum at 𝑡∕𝐽𝑝 = 0.3. For 𝑡∕𝐽𝑝 ≥ 0.5 the kinetic energy of the
bipolarons are negligible. At small 𝑡∕𝐽𝑝, the contribution to the polaron
hopping amplitude is mainly due to the motion of the polaron pairs
(bipolarons), while for large 𝑡∕𝐽𝑝, the contribution arises only from
single-particle hopping processes. As long as the inter-site bipolarons
exist (𝑡∕𝐽𝑝 ≤ 0.52), they move in the lattice independently and indicate
conductivity. Strong bipolaron hopping kinetic energy at the vicinity of
𝑡∕𝐽𝑝 ∼ 0.3 and 𝑚∗

𝑏𝑖 ∼ 2𝑚∗
𝑝 in that region signals small, light and mobile

bipolarons, suggests the existence of a possible superconducting phase
around 𝑡∕𝐽𝑝 ∼ 0.3.

At region I, due to the extreme strong EP coupling (𝑡 ≪ 𝐽𝑝), the bare
hopping is largely reduced by strong exchange interaction and helps the
formation of two-particle bound states, resulting in the formation of NN
bipolarons. With the increase of motion of the polarons, the polarons
at NN positions tend to move at distant sites which correspond to the
increase in correlation at larger distances and hence, an increase in
bipolaron size. This corresponds to Region II. In other words, it can be
argued that region II hopping leads to coherent propagation of static
configuration. However, for large 𝑡∕𝐽𝑝, the polarons are separated at a
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Fig. 4. (a) Energy dispersion for bipolaron in linear chain (𝐿 = 18) for different values of 𝑡∕𝐽𝑝. (b) Ratio of bipolaron to polaron effective mass as function of the ratio 𝑡∕𝐽𝑝 (c)
NN bipolaron kinetic energy w.r.t. 𝑡∕𝐽𝑝.

maximum permissible distance depending on the lattice size, leading to
the constant size. Contrary to the results of the 18- and 26-site cluster,
the bipolaron size decreases slightly above the critical value for a 2D 10
site cluster. This result may be due to the confinement of the polarons
in a very small region, which largely affects the results. Moreover, small
bipolarons are perfectly mobile for small 𝑡∕𝐽𝑝 in both the geometry.

4.3. 4-particle case

We now present results for 4-particles in an 18-site lattice linear
chain only. Since the linear dimension of a square is very small, even
for an 18-, 26-site cluster, results for four-particles may not be reliable
enough and hence are not presented. At 𝑡∕𝐽𝑝 = 0.0, the ground state is
exactly −2𝐽𝑝 i.e. twice the ground state energy for 2-particle systems,
in agreement with analytical results.

Figs. 5(a) and 5(b) shows the probability of finding two polarons.
Fig. 5(a) clearly indicate that for all 𝑡∕𝐽𝑝 ≤ 0.4, maximum probability
of finding two anti-parallel polarons are at |𝑖 − 𝑗| = 𝑎, small finite
probabilities for |𝑖 − 𝑗| = 4𝑎, 5𝑎, 6𝑎. The correlation at |𝑖 − 𝑗| = 𝑎
decrease with 𝑡∕𝐽𝑝. At 𝑡 ∼ 𝐽𝑝, the antiparallel correlation at all distances
is finite and is nearly equal, which shows that the polarons to be
uniformly distributed in the lattice. However, for parallel spin a small
but dominating correlation is observed for |𝑖 − 𝑗| = 4𝑎, 5𝑎, 6𝑎 for 𝑡 ≪ 𝐽𝑝.
A strong correlation at NN sites for anti-parallel spin confirms the for-
mation of only NN site singlet bipolarons. No triplet NN site bipolarons
are formed. The long-distance correlations for an 18-site linear chain
can be better explained with Figs. 6(a) and 6(b), where we have shown
a schematic diagram for the most probable distribution of the polarons
in the chain for small 𝑡∕𝐽𝑝. Though other configurations are possible
they are less probable and hence not shown here. Dominating NN site
correlation with small correlation at other |𝑖 − 𝑗| = 4𝑎, 5𝑎, 6𝑎 suggest
the formation of two singlet NN site bipolarons separated by a large
distance.

We now study the nature of pairing of the NN site bipolarons by
calculating on-site and inter-site singlet pair correlation function (𝑠-
wave and 𝑑-wave for 2D and we use this notation by brevity) pairing

Fig. 5. Probabilities of finding two polarons at different lattice distance for different
hopping strength in 18-site, 4 polarons. (a) Anti-parallel spin (b) parallel spin.
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Fig. 6. Schematic probable polaronic positions based on correlation function in 1D (a) and (b). Another similar set can be identified by replacing ↑ by ↓ and vice versa.

Fig. 7. 𝑠-wave and 𝑑-wave pairing correlation function versus 𝑡∕𝐽𝑝 for 18-site linear
chain with four polarons.

correlations and is shown in Fig. 7. Results indicate that for linear
chain and 𝑡 ≪ 𝐽𝑝, the 𝑑−wave correlation is dominant with a negli-
gible 𝑠-wave correlation. With an increase of polaron mobility 𝑑-wave
pairing correlation decreases whereas 𝑠-wave correlation increases. At
𝑡 ∼ 𝐽𝑝, both 𝑑- and 𝑠-wave pairing correlation are finite with 𝑑-wave
dominating most. Clearly, at the region of existence of NN-site singlet
bipolarons (𝑡∕𝐽𝑝 ≤ 0.5), the pairing is strongly in the 𝑑− wave channel.
The presence of the pairing of polarons in the 𝑑-wave channel suggests
the existence of a superconducting phase.

Finally, we plot the binding energy of two bipolarons 𝛥4 in Fig. 8(a),
which is an important probe to determine the formation of bipolaron
pairs — a bipolaron composite. Here we have calculated 𝐸2

0 and 𝐸4
0

on an 18-site chain, such that the boundary condition for both 𝐸𝑛0 ’s
remains the same. Results show for small to an intermediate value of
𝑡∕𝐽𝑝 the bipolaron–bipolarons binding energy is negative, suggesting
pair formation of the bipolarons − bipolaron composite for an 18-
site linear chain. Also, it is evident that 𝛥4 is much smaller than
the bipolaron binding energy 𝐽𝑝. As the small bipolarons move there
is a small overlapping between them, leading to a small attractive
interaction forming bipolaron composite. This attraction may lead to
Bose–Einstein Condensation at low temperature which may eventually
lead to superconductivity. In the 1D continuum model [34], similar
existence of superconducting phase due to Bose–Einstein condensation
of translation-invariant bipolarons was reported. The schematic dia-
gram for the bonding and antibonding of bipolaron pairs is shown in
Figs. 8(b) and 8(c). Since two parallel polarons at neighboring sites
do not exist as evident from the 𝑝 − 𝑝 correlation function, it leads to
antibonding and is repulsive. However, an attraction may exist between
two bipolarons if they have the configuration shown in figure 8(b) due
to virtual pairing via antiparallel alignment of the NN site polarons
(shown in dashed oval). This leads to a negative bipolaron-bipolaron
binding energy, forming bipolaron composite. With the increase of
mobility of polarons, the polarons are far apart with a breakdown of
bipolarons and bipolaron pairs.

Fig. 8. Binding energy of two bipolarons versus 𝑡∕𝐽𝑝 (b) Bonding between two
bipolarons (c) Anti-bonding between two bipolarons.

5. Conclusion

In conclusion, our study of the 𝑡−𝐽𝑝 model identifies the parameter
ranges for the formation of small and large bipolarons in both 1D and
2D. The transition from small inter-site to large bipolarons or nearly
free polarons are identifiable. For the two-particle system, the ground
state is a bipolaronic singlet. For a small (𝑡∕𝐽𝑝) polarons predominantly
occupy the nearest-neighbor position for all particle density and all
geometry. With the increase in the 𝑡∕𝐽𝑝 ratio they tend to be separated
at the maximum distance determined by the dimension of the lattice.
The crossover from small to large bipolaron is independent of system
size but depends on the cluster geometry. From the bipolaron effective
mass and the kinetic energy calculation, we can conclude that at small
𝑡∕𝐽𝑝(∼ 0.3), light and small bipolarons are perfectly mobile but for
greater polaronic hopping amplitude small bipolarons breakup and the
motion is a single particle process. The mobile bipolarons and their
pairing in the 𝑑−wave channel suggest the existence of a superconduct-
ing phase. The most stable superconducting phase may emerge at the
vicinity of 𝑡∕𝐽𝑝 ∼ 0.3. We have shown that there is the formation of
bipolarons composite in the parameter range 0 < 𝑡∕𝐽𝑝 < 0.5 with small
binding energy. This small attraction between bipolarons may lead to
Bose–Einstein Condensation at low temperature which may eventually
lead to superconductivity.
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