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We had earlier derived the most general criteria for thermal stability of a quantum

black hole, with arbitrary number of parameters, in any dimensional spacetime. These

conditions appeared in form of a series of inequalities connecting second order derivatives
of black hole mass with respect to its parameters. Some black holes like asymptotically

flat rotating charged black holes do not satisfy all the stability criteria simultaneously,

but do satisfy some of them in certain region of parameter space. They are known as
“Quasi Stable” black holes. In this paper, we will show that quasi stable black holes

although ultimately decay under Hawking radiation undergo phase transitions. These

phase transitions are different from phase transition in ADS Schwarzschild black hole.
These are marked by sign changes in certain physical quantities apart from specific heat

of the black hole. We will also discuss the changes in the nature of fluctuations of the
parameters of these quasi stable black holes with different phases.

Keywords: Quasi stable black hole; phase transition in black hole; non Hawking-Page

phase transition; quantum gravity.

PACS Nos.: 04.70.-s, 04.70.Dy

1. Introduction

Einstein predicted, through his classical field equations of general theory of rela-

tivity, that black holes accrete everything surrounding them.1,2 Thus a black hole

will grow in size for ever. In his theory, Einstein entirely treated spacetime clas-

sically. It was Hawking who first tried to invoke quantum mechanics, through his

semi classical theory,3 to study interaction of black holes with matters surrounding

them. He showed that black holes can radiate and hence decay. Thus a black hole

can both accrete and radiate simultaneously.

But Hawking treated only matters quantum mechanically, not spacetime. In his

theory, black holes were still classical. Thus in his semi classical theory, black holes

and matters were not in equal footing. We had focused on this issue in our earlier
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works.4,5 Of course, quantization of gravity has not been fully proven yet. But, at

least, we know what kind of form it should have in certain situations.4 These are

enough for us to construct grand canonical partition function of a generic black

hole, assuming it to be in connection with a heat bath, here the heat bath is rest

of the universe. We derived, from the conditions of convergence of grand canonical

partition function, the stability criteria of a generic black hole with any number

of parameters in arbitrary dimensional spacetime.5 They came in form of a series

of inequalities connecting second order derivatives of black hole mass with respect

to its parameters. We found, from these criteria, that ADS black holes are stable

under Hawking radiation i.e. accretion dominates over radiation for certain range

of its parameters.4

We also have noticed that asymptotically flat rotating charged black holes do

not satisfy all the stability criteria simultaneously. But they satisfy some of the

stability criteria within certain region of spacetime.4,5 Thus these black holes, al-

though decay under Hawking radiation, are different from unstable black holes, like

asymptotically flat schwarzschild black hole. These black holes are categorized as

“Quasi Stable” black holes.

We had calculated the fluctuations for various parameters of a stable black hole

and they turned out to be very small.6 This is very much expected for a stable

system. In fact, these tiny fluctuations are the indications of the stability for a

black hole. We also had calculated fluctuations of various parameters for quasi

stable black holes and it turned out that some of the fluctuations are tiny,7 like

stable black holes, in certain region of parameter space. This is due to the fact that

quasi stable black holes do satisfy some of the stability criteria. In fact, we had also

shown that due to these facts quasi stable black holes slow down their decay rate

in certain regime of their parameter space.7

Like ordinary thermodynamic system, black holes also have different phases.

Stable black holes have stable phases within its region of stability, e.g. ADS black

holes. Similarly, unstable black holes, like asymptotically flat schwarzschild black

hole, have unstable phases. During their decay, unstable black holes never change its

phase. Similarly stable black holes maintain equilibrium with their surrounding and

stay on stable phase, preventing hawking decay. But situation is entirely different

for quasi stable black holes. So far, we know that sign of specific heat distinguishes

stable phase from unstable phase. In this paper, we will show that quasi stable

black holes also have various different phases. Quasi stable black holes undergo

phase transition among these phases during their decay process. We will in fact

also show that nature of fluctuations change from one phase to another phase.

This paper is organized as follows: A detailed discussion on quasi stable black

holes and their phase structure are done in Sec. 2. We also have discussed the

possibility of phase transition for quasi stable black holes. In this section, we have to

recapitulate some of our earlier works for sake of completeness. In the next section,

we have considered two examples of quasi stable black holes and have discussed

their phase transitions in details. We have also discussed on varying nature of
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fluctuations from one phase to another. In the last section, we summarized our

work with possible future outlook.

2. Quasi Stable Black Holes and Their Phase Structure

Any charged rotating black hole possesses discrete values of charge, area and an-

gular momentum. This is expected in any quantum theory of gravity, e.g. Loop

Quantum Gravity supports this.8 Now we can consider a black hole to be immersed

in a heat bath, with which it can exchange energy, charge (Q) and angular momen-

tum (J). Thus, we can write down the grand canonical partition function (ZG) as

summation over possible eigenstates with appropriate weightage.9 We can convert

this summation, with the help of Poisson’s resummation formula,10 into integration

and determine the criteria for thermal stability. A charged rotating black hole, in

thermal equilibrium, is represented by the saddle point (Ā, Q̄, J̄). Ā denotes hori-

zon area (A) at equilibrium and so on. It has been shown earlier4 that this partition

function turned out to be integration over the space of fluctuations a = (A − Ā),

q = (Q− Q̄), j = (J − J̄) around the saddle point and is given as4

ZG ≈
∫
da dq dj exp

(
−β

2

[(
MAA −

SAA
β

)
a2 + (MQQ)q2 + (MJJ)j2

+ (2MAQ)aq + (2MAJ)aj + (2MQJ)qj

])
. (1)

The only assumption we have made is that the mass of the black hole (M) is a

function of its charge, area and angular momentum. Here, MAA = ∂2M
∂A2 , MAQ =

∂2M
∂A∂Q etc. and these are evaluated at the saddle point.

The convexity of the above integral leads to the criteria for thermal stability of

the black hole4 and are given as

(βMAA − SAA) > 0, MQQ > 0, MJJ > 0,

(MQQMJJ − (MJQ)2) > 0, (MJJ(βMAA − SAA)− β(MAJ)2) > 0,

(MQQ(βMAA − SAA)− β(MAQ)2) > 0, |H| > 0

where |H| is the determinant of the Hessian matrix (H) and this matrix is given as

H =


βMAA − SAA βMAQ βMAJ

βMAQ βMQQ βMJQ

βMAJ βMJQ βMJJ

.
We have realistically assumed that (inverse) temperature β is positive.

We get the above seven stability criteria for a black hole with two parameters

(excluding horizon area), here namely charge and angular momentum. In general for

black holes with “n” parameters (excluding horizon area), there will be (2n+1 − 1)

stability criteria.5 But all these conditions are not independent, actually only (n+1)

number of conditions are independent. There will be exactly m number of conditions
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for thermodynamic equilibrium between two systems in connection whose entropy

depends on m parameters. Thus for charged rotating black holes m equals to (n+1).

When a black hole, e.g. ADS Kerr Newman black hole,4 satisfies all the stability

criteria together within certain regime of parameter space, then the black hole is

stable within that regime. We have already shown that asymptotically flat black

holes with charge and rotation are quasi stable i.e. they satisfy some of the stability

criteria, but not all simultaneously.

Thus we see that stability of a black hole is determined by the signs of the func-

tions, appeared in the stability criteria. There will be (n+1) number of fluctuations

corresponding to (n+1) number of parameters, including the area of the black hole.

These fluctuations are individually related, to be shown later, with some physical

quantities of the black hole. Signs of each of these physical quantities designate one

distinguished phase. Thus a quasi stable black hole with “n” parameters (exclud-

ing horizon area) can at most have 2n+1 number of phases. Any of these physical

quantity can have same sign in different isolated islands of parameter space. Thus

that black hole can be in same phase in different positions of its parameter space.

It can be so happened that a decaying black hole can be again in the same phase

in which it was also in earlier, at its younger age. Thus quasi stable black holes go

through phase transitions. Same phase transitions may reoccur many times. These

interesting phase transitions can never occur either in stable or in unstable black

holes. The nature of spacetime determines these phases for a quasi stable black

hole.

Kerr-sen (KS) and asymptotically flat Kerr-Newman (KN) black holes are

well studied quasi stable black holes.4,6 We have already shown that MQQ, MJJ ,

(MQQMJJ − (MJQ)2) are always positive for them, while |H| is always negative.

We have already shown6 that the fixed signs of the last two quantities made the

fluctuation of area always large. Hence physical quantity related to area fluctuation,

e.g. it was specific heat for Schwarzschild black hole, will also have fixed sign. Thus

at most four phases can be realized for both of these two black holes. In fact this

is the usual scenario with the number of phases for any quasi stable black hole.

We have shown in our earlier works6,7 that finite fluctuations of various

parameters for both stable and quasi stable black holes are related to the stability

criteria. We will show here that those fluctuations are related to certain physically

measurable quantities of the black hole. In fact these quantities change sign during

phase transitions. This idea is in fact generalization, in case of quasi stable black

holes, of Hawking’s old idea in the context of asymptotically flat schwarzschild

black hole (AFSBH).11 Hawking showed that AFSBH is unstable as specific heat

is negative. It is in fact the reason behind the negativity of the quantity ∂T
∂A .4 In

terms of fluctuation, this is the reason for divergence of ∆A2 i.e. ∆A2 becomes very

large for AFSBH.6 AFSBH has horizon area as its only parameter. But quasi stable

black holes have multiple parameters, apart from horizon area. Thus it is natural

to expect that fluctuations of other parameters do have similar relationship with

some physical quantities. We will show that this is in fact the case.
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We will now use the summation formalism of partition function to build up

various physical quantities in connection with quasi stable black holes.

In this formalism, grand canonical partition function is given as4

ZG =
∑
r

exp(−β(Er − ΦQr − ΩJr));

here summation is taken over eigenstates. Φ and Ω, respectively denotes electric

potential and rotational speed of the isolated horizon.

Define Φ̄ ≡ βΦ, Ω̄ ≡ βΩ, where Φ̄ and Ω̄, respectively determines the electrical

and rotational equilibrium between two connected systems. This is shown in details

in the Appendix.

Thus partition function can be rewritten as

ZG =
∑
r

exp(−βEr + Φ̄Qr + Ω̄Jr),

and the average value of angular momentum defined as

J̄ ≡

∑
r
Jr · exp(−βEr + Φ̄Qr + Ω̄Jr)

ZG
= ∂(ln(ZG))/∂Ω̄.

Similarly we can calculate J̄2 and is given as

J̄2 ≡

∑
r
J2
r · exp(−βEr + Φ̄Qr + Ω̄Jr)

ZG
.

We can calculate fluctuation of angular momentum and this turns out to be

∆(J)2 ≡

∑
r
(Jr − J̄)2 · exp(−βEr + Φ̄Qr + Ω̄Jr)

ZG

= J̄2 − (J̄)2 = ∂2(ln(ZG))/∂Ω̄2.

It is to be mentioned that the above calculations are possible only when fluctu-

ation of angular momentum is converging. Moreover, the above partial derivatives

are taken when β and Φ̄ are assumed to be constant. Similarly β and Ω̄ are assumed

to be constant when partial derivatives are taken with respect to Φ̄ and so on.

We can now define rotational inertia of the black hole (SJ) as

SJ ≡ β · ∂J̄/∂Ω̄

which is equivalent to β ·∆(J)2.

One important issue to be mentioned here is as follows. All the quantities β,

Φ̄ and Ω̄ can be expressed in terms of independent variables Ā, Q̄ and J̄ . Thus

inversely Ā, Q̄ and J̄ are also expressible in terms of β, Φ̄ and Ω̄. Hence the above

partial derivative can be taken with respect to Ω̄, treating β, Φ̄ as constant and so

on. Thus SJ can be calculated independently, so also β ·∆(J)2. They turn out to

be equal only if ∆(J)2 does not blow up. In fact ∆(J)2, for certain quasi stable

black holes in some certain region of parameter space, approaches to become zero
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and then suddenly blows up. This marks the phase transition. But SJ vanishes at

the point of phase transition and changes sign afterwards. It does not blow up there

and starts to disrespect the above equality.

We can define the electric capacitance of a black hole as

SQ ≡ β · ∂Q̄/∂Φ̄

which equals to β ·∆(Q)2.

The above said fact is also true for charge fluctuation, i.e. ∆(Q)2 approaches to

become zero and then suddenly blows up. This marks the electrical phase transition.

But SQ vanishes at the point of phase transition and changes sign afterwards. It

does not blow up there and starts to disrespect the above equality. Thus we find

that sign changes of rotational inertia and electric capacitance individually mark

two different phase transitions.

We have already seen that4 determinant of Hessian (|H|) for quasi stable black

holes are negative, e.g. KS and asymptotically flat KN black holes. We know7 how to

calculate fluctuations in case of quasi stable black holes. Therefore, we can conclude

that

(1) ∆(Q)2 is finite only if ((βMAA − SAA)MJJ − β(MJA)2) is negative.a

(2) ∆(J)2 is finite only if (MQQ(βMAA − SAA)− β(MAQ)2) is negative.

Of course it is to be noted that |H| is always negative.

Thus ((βMAA − SAA)MJJ − β(MJA)2) and (MQQ(βMAA − SAA)− β(MAQ)2)

equal to zero are the conditions of phase transitions. These make respectively elec-

tric capacitance and rotational inertia vanishing at the point of phase transition.

3. Examples of Quasi Stable Black Holes and Their Phase

Transitions

In this section, we will consider two examples of quasi stable charged rotating black

holes. We will consider their phase transitions in details.

3.1. Kerr-Sen black hole

The mass (M) of this black hole depends on its parameters as12

M2 =
A

16π
+
Q2

2
+

4πJ2

A
.

The parameter space is restricted by the inequality J
A < 1

8π as tempera-

ture (∝ MA) of a non extremal black hole is always positive. Now the quantity

a∆(Q)2 measures the fluctuation of electric charge from its equilibrium value. It is mathe-

matically expressed as6,7 ∆(Q)2 =
∫
da dq dj q2f(a,q,j)∫
da dq dj f(a,q,j)

; where f(a, q, j) = exp
(
−β

2

[(
MAA −

SAA
β

)
a2 + (MQQ)q2 + (MJJ )j2 + (2MAQ)aq + (2MAJ )aj + (2MQJ )qj

])
. Similarly, ∆(J)2 is

defined.
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(MQQ(βMAA−SAA)−β(MAQ)2) is negative when J
A < 0.4

8π . Thus the curve J
A = 0.4

8π

in parameter space is the boundary that separates stable rotational phase from un-

stable rotational phase. Hence rotational inertia vanishes on each points of the

curve. But ((βMAA − SAA)MJJ − β(MJA)2) is always negative and consequently

electric capacitance is always positive. This indicates the electrical equilibrium of

the black hole with the surrounding. Hence J
A < 0.4

8π is the region where both ∆(J)2

and ∆(Q)2 are finite for KS black hole. In this region of parameter space for KS

black Hole, incoming and outgoing quanta of angular momentum and charge main-

tain a perfect equilibrium. But the equilibrium condition between incoming and

outgoing quanta of angular momentum is lost in the region 0.4
8π < J

A < 1
8π , although

the same for quanta of charge is still intact.

This KS black holes ultimately decay as ∆(A)2 is always negative. Suppose

the angular momentum (J) is such that J
A < 0.4

8π and hence J will almost remain

unchanged as ∆(J)2 is extremely tiny in this region. But area (A) will decrease

and hence the ratio J
A will increase and becomes greater than 0.4

8π . Once this ratio

crosses that value, J starts to fluctuate rapidly. But this ratio can not be grater

than 1
8π with decreasing area (A). Thus J will ultimately reduce and hence the ratio

J
A becomes lesser than 0.4

8π . This process will go on. This means that KS black hole

tries to minimize the fluctuation for angular momentum. Thus we see that whenever

the ratio J
A tries to exceed 1

8π , it reduces automatically to maintain certain bound.

Hence its rotational inertia becomes negative and then again becomes positive. This

in fact goes on. Thus a particular phase transition happens in various places of

parameter space. This is possible only for quasi stable black holes. Phase transition

labeled by change in sign of electric capacitance does not occur in case of KS black

holes as charge fluctuation never blows up for it.

3.2. Kerr-Newman black hole

The mass (M) of this black hole depends on its parameters as13

M2 =
A

16π
+
π

A
(4J2 +Q4) +

Q2

2
.

The parameter space is restricted by the inequality (4J2 +Q4) < A2

16π2 as tem-

perature of a non extremal black hole is always positive. Unlike the case of KS black

hole, here Q2

A ratio is also bounded and its maximum value is 1
4π , double of that

for J
A .

Define, x ≡ πJ/A and y ≡ πQ2/A. We introduce these two dimensionless quan-

tities to reduce complexity in writing some expressions. Now on calculation it turns

out that (MQQ(βMAA − SAA)− β(MAQ)2) is proportional to FAQ, where

FAQ ≡
9y3

32
− 34x2y3 + 9x2y2 + 9x2y − 7y4

8
− 13y5 − 3y2

64

− 3y

512
+
x2

16
+ 6x4 + 72x4y − 1

2048
.
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Thus the two-dimensional surface FAQ = 0 in three-dimensional parameter

space is the boundary that separates stable rotational phase from unstable rota-

tional phase. Hence this surface is surface of null rotational inertia. So crossing

of the black hole through this surface indicates the occurrence rotational phase

transition.

In Fig. 1, the shaded region is the projected region of parameter space where

angular momentum fluctuates very tiny, i.e. FAQ < 0. Thus rotational inertia is

positive in this region. This figure manifestly indicates that higher values of J
A

make the fluctuation of angular momentum large. Hence even if J
A is large at the

beginning, J will reduce due to its large fluctuation as area of the decaying black

hole reduces. JA ratio will come into the region as shown in Fig. 1, hence J would not

change much. But area (A) will decrease continuously and as a result J
A ratio will

again become large enough such that J starts to fluctuate appreciably once again.

This switching of JA ratio from larger to smaller value and vice versa will keep going.

This is same as the case of KS black hole. Thus here also phase transition labeled

by vanishing of rotational inertia occurs and it can occur anywhere in FAQ = 0

surface.

Fig. 1. Pictorial representation of region of tiny fluctuation of angular momentum.

Similarly ((βMAA − SAA)MJJ − β(MJA)2) can be expressed in terms of x and

y. It turns out on calculation that this is proportional to FAJ , where

FAJ ≡
5y2

8
+ 7y4 + 4y3 − 16x2 − 1

256
.

Thus the two-dimensional surface FAJ = 0 in three-dimensional parameter space

is the boundary that separates stable electrical phase from unstable electrical phase.

Hence this surface is surface of null electric capacitance. So crossing of the black

hole through this surface indicates the occurrence electrical phase transition.

In Fig. 2, the shaded region is the projected region of parameter space where

electric charge fluctuates very tiny i.e. FAJ < 0. Thus electric capacitance is positive

in this region. It manifestly indicates that higher values of Q
2

A make the fluctuation

of charge tiny only if the ratio J
A is high as well. But we have just seen that J

A ratio

cannot always be high. In fact the ratio Q2

A will oscillate between higher and lower
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Fig. 2. Pictorial representation of region of tiny fluctuation of charge.

values, exactly as the reason J
A ratio does the same. This indicates the occurrence

of phase transition labeled by change in sign of electric capacitance. It can occur

anywhere in FAJ = 0 surface. This particular type of phase transition was absent

for KS black hole. This difference is due to the fact that positivity of temperature

restricts both charge and angular momentum for KN black hole, but in case of KS

black holes, it is angular momentum only.

4. Discussion

Quasi stable rotating charged black holes, like unstable black holes, ultimately decay

under Hawking radiation. But charge and angular momentum do not fluctuate

appreciably for these black holes in certain region of their parameter spaces. This is

somewhat similar to stable black holes. But the unique property of these quasi stable

black holes are multiple phase transitions, although they are decaying. AFSBH is

unstable as specific heat diverges. ADS Schwarzschild black holes become unstable

when specific heat becomes negative. The sign change is specific heat indicates

the phase transition. But ADS Schwarzschild black hole has no parameter except

its horizon area. Thus that was the only possible phase transition. But a quasi

stable black hole can have too many phases. How would those phase transitions

look like? This is very natural question to ask. In this paper we have answered

this question explicitly with examples. In this paper we also have tried to give a

geometric interpretation of these phase transitions. These are unique features for

phase transitions in quasi stable black holes. This is the novelty of this paper.

There exist models like Ruppeiner geometry, non-extended phase space analysis

to study phase transitions of black holes. The starting point of Ruppeiner geome-

try is to express entropy of a black hole in terms of its mass, charge and angular

momentum.14 One then considers the change in entropy upto second order in terms

of changes in mass, charge and angular momentum. This change is then expressed

in form of a Riemannian line element and thermodynamic scalar is calculated from

there. Divergence in this scalar indicates the microscopic disorder.15 In this for-

malism, choice of thermodynamic variables are ambiguous. But this is not the case

with our formalism, where the starting point is the construction of grand canonical
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partition function. Here we have to take horizon area, electric charge and angular

momentum as thermodynamic variables as mass of the black hole solely depends

on these parameters.4 We found that the entire partition function of the black

hole turned out to be same for the boundary states only. This is possible due to

thermal holography i.e. complete annihilation of the bulk states of the black hole.4

Bulk states respect symmetries like local Lorentz invariance, Gauss’s constraint

of electrodynamics (local gauge invariance) and as a consequence their respective

generators angular momentum, electric charge appear in form of thermodynamic

variables in expression of grand canonical partition function. Thus we see that our

formalism is structurally quite different from that of Ruppeiner’s geometrical for-

malism to study phase transition. In fact our formalism is also applicable for non

conventional black holes as well.5 Hence independent identity and applicability of

our formalism to study black hole thermodynamics is still intact even after con-

sideration of Ruppeiner’s geometrical formalism to study phase transition of black

holes. In this paper, we find that same phase transition occurs multiple times for

quasi stable black holes during their decay, having similarity with reentrant phase

transition in case of AdS Kerr-Newman black hole.16 This feature in fact indicates

the self sufficiency and independency of our formalism.

On the other hand one choose square of electric charge, not charge itself, as ther-

modynamic variable in non-extended phase space formalism.17 But we have already

mentioned that choice of electric charge as thermodynamic variable is automatic

in our formalism due to Gauss’s constraint of electrodynamics of bulk spacetime.4

The form of electric capacitance, considered in this paper, in connection with elec-

tric charge would definitely be changed if we consider square of electric charge

as thermodynamic variable. But the overall conclusion like thermal instability of

Kerr-Newman black hole should remain unaltered. Actually electric capacitance,

connected with thermodynamic variable electric charge, is very natural physical

quantity to consider even for thermodynamics of ordinary electric system. Thus

Gauss’s constraint of electrodynamics of bulk spacetime guarantees the non viola-

tion of this natural outcome.

In fact this paper can have imprints on other branch of physics as well. We

have seen here that rotating charged quasi stable black holes would end up in non-

rotating black holes by virtue of multiple numbers of phase transitions. Close to

the end state, they would become a tiny ball with a minimum area according to

theory like LQG. Thus they can form component of dark matter as well.18 In this

sense, our analysis may have some impacts on dark matter physics.

We have also noticed that fluctuations for charge and angular momentum of

quasi stable rotating charged black holes have some similarities with that of sta-

ble ADS Kerr-Newman black holes. Now, the ADS/CFT correspondence tells that

asymptotically ADS black hole is dual to a strongly coupled gauge theory at finite

temperature.19–22 It is possible to analyze the strongly correlated condensed matter

physics using ADS/CFT correspondence. Thus this paper may have some impacts

on condensed matter physics as well.
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Appendix

Consider two systems A and B are in contact and they together form an isolated

system. Suppose they are allowed to share energy only, but total energy (EA+EB)

is conserved. Thus total entropy (S) of this isolated system (A+B) is (SA(EA) +

SB(EB)). In thermal equilibrium, change in entropy (dS) is zero. This implies
∂SA

∂EA
= ∂SB

∂EB
at equilibrium. This ∂SA

∂EA
is defined as the inverse of the temperature

of system A and is denoted as βA(= 1/TA). This is very well known fact and this

definition rightly denotes the fact that heat flows from hotter body to colder body.

Now we allow these two systems to share their electrical charge as well. Thus

total entropy (S) is given as, S = SA(EA, QA) + SB(EB , QB). Suppose thermal

equilibrium is reached between these two systems and hence change in entropy

(dS) =
(
∂SA

∂QA
− ∂SB

∂QB

)
dQA. We know as long as thermodynamic equilibrium does

not reach, dS is positive. We also know that charge flows from higher potential to

lower potential. Let A be the system with higher potential (ΦA) and hence dQA
is positive. Thus we can define, ∂SA

∂QA
≡ ΦA

TA
. It is easy to see that this definition

matches dimensionally as well. Thus equality of Φ
T , equivalently βΦ, between two

systems indicates their electrical equilibrium.

Now if we allow these two systems to share their angular momentum, we can

similarly show that rotational equilibrium is achieved when ∂SA

∂JA
equals to ∂SB

∂JB
. In

fact we can define ∂SA

∂JA
≡ ΩA

TA
. Here ΩA denotes the angular speed for system A. This

definition is not only correct dimensionally, but it also obeys our known observation

that angular momentum shifts from rotating object with higher angular speed to

rotating object of lower angular speed.

In this discussion, EA, SA, TA, QA, ΦA, JA and ΩA, respectively, denotes the

energy, entropy, temperature, electric charge, electric potential, angular momen-

tum and rotational speed of system A. Similarly these quantities with subscript B

denotes respectively the same for system B.
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