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Abstract   In this work, we propose a stochastic 

inventory model under the situations that delay in 

imbursement is acceptable. Most of the inventory model on 

this topic supposed that the supplier would offer the retailer 

a fixed delay period and the retailer could sell the goods 

and accumulate revenue and earn interest with in the credit 

period. They also assumed that the trade credit period is 

independent of the order quantity. Limited investigators 

developed EOQ model under permissible delay in 

payments, where trade credit is connected with the order 

quantity. When the order quantity is a lesser amount of the 

quantity at which the delay in payment is not permitted, the 

payments for the items must be made immediately. 

Otherwise, the fixed credit period is permitted. However, 

all these models were completely deterministic in nature. 

In reality, this trade credit period cannot be fixed. If it is 

fixed, then retailer will not be interested to buy higher 

quantity than the fixed quantity at which delay in payment 

is permitted. To reflect this situation, we assumed that trade 

credit period is not static but fluctuates with the ordering 

quantity. The demand throughout any arrangement period 

follows a probability distribution. We have calculated the 

total variable cost for every unit of time. The optimum 

ordering policy of the scheme can be found with the aid of 

three theorems (proofs are provided). An algorithm to 

determine the best ordering rule with the assistance of the 

propositions is established and numerical instances are 

provided for clarification. Sensitivity investigation of all 

the parameters of the model is presented and deliberated. 

Some previously published results are special cases of the 

consequences gotten in this paper. 

Keywords Probabilistic Inventory Model, Trade 

Credit, Permissible Delay in Payments 

1. Introduction

In developing traditional optimal ordering policy of an 

inventory model, it is generally assumed that the retailer 

must pay to supplier for the products at the time receiving 

of substances as every business owner would like to have 

all sales on a cash basis. However, in practice it is not 

always possible in competitive market place. Supplier 

allows retailer a certain a delay period (credit period) for 

settling down the account and no interest is charged on the 

unsettled account if the account is settled by the end of the 

credit period. The supplier will charge higher interest if the 

account is not settled within the trade credit period. Using 

this trade credit policy, suppliers can attract additional 

customers by not demanding cash up front. Trade credit 

can be advantageous for the new retailer incapable to raise 

capital or secure business loans, yet needs stock quickly. 

Using trade credit, business to be flexible, adapting to 

market demands and seasonal variations so that retailer has 

a constant supply of goods even when his\her finances are 

not stable. Supplier can mix trade credit with bulk 

discounting to encourage buyers to speed more. Supplier’s 

trade credit can prevent buyers from looking elsewhere and 
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strengthen the supplier-buyer relationship. The most of 

suppliers frequently make exercise this plan to boost their 

commodities though there are some disadvantages of trade 

credit like late payment, cash flow problem, customer 

assessment, account handling etc. Goyal [10] first 

established an EOQ model under permissible delay in 

payments. In his model supplier allows a fixed time period 

for settling down the account, supplier is essentially giving 

his customer a loan without interest throughout this period. 

Chung et al. [8] settled a substitute method to determine the 

optimal ordering procedure under the condition of delay in 

payments. Shah and Shah [21] deliberated the same model 

by tolerating deficiencies. Shah and Shah [22] first 

considered a probabilistic model where delay in payment is 

tolerable. They assumed more realistic assumption that 

demand is not deterministic it follows probabilistic 

distribution. Shah et al. [24] developed the equivalent 

model, where time was treated as a continuous variable. In 

another paper, Shah and Shah [23] also established a 

discrete-time probabilistic inventory model under 

permitted delay in payments. Many scholars, such as 

Aggarwal and Jaggy [1], Hwang and Shinn [13], Jamal et 

al. [14], Sarker et al. [20], Huang [12], Mahato [17], Jiang 

Wu et al. [15], Musa and Sani [18], Li et al. [16] and 

Pramanick and Maity [19] also developed inventory 

models combining acceptable delay in payment into 

account. All inventory models cited above were made 

under the consideration that the trade credit plan is fixed. 

The extend and pattern of trade credit in an industry or 

business sector depend on a number of factors, including 

the average rate of turnover of stock, the nature of the 

goods involved – e.g. their perishability, the relative size of 

buying and selling firms, and the degree of competition. 

Several researchers made their work by assuming the fact 

that delay period is dependent on size of buying of the 

product. Chang et al. [2],Chung et al. [8], Chung et al. [5], 

Chang et al. [3], Chung et al. [7], Teng et al. [25] Chen et al. 

[4], Tiwari et al. [26] developed economic models under 

permitted delay in payment, where the trade credit period is 

connected to the order number. Once the order quantity is 

fewer than the amount at which the delay in payment is 

allowed, the payment for the matters must be made 

instantly. If not, a fixed trade credit is allowed. The 

supplier practices this strategy to encourage retailer to 

order an extra quantity. However, these aforementioned 

models were entirely deterministic in nature. In reality, this 

trade credit period cannot be fixed. If it is fixed, then the 

retailer will not be concerned in purchasing higher quantity 

than the fixed quantity at which delay in payment is 

permitted. To reflect this circumstance, an inventory model 

is settled under the assumption that the trade credit period 

is not only allied to ordering quantity but also fluctuates 

with the ordering quantity. It is also supposed that the 

demand is a continuous random variable following some 

probabilistic distribution. As it is seen in paper of De and 

Goswami [10] that continuous cycle time produces better 

result than discrete, so in this paper only continuous cycle 

time is considered.  It is also showed that the optimal 

ordering strategy can be determined by means of our 

Theorems 1, 2 and 3. Outcomes found in this paper are 

exemplified with the support of a set of numerical 

examples and sensitiveness of different parameters are also 

contained within. 

2. Assumption and Natation 

Our proposed inventory model is framed with the 

following conventions and notations:  

a). Time period is infinite i.e., there is no restriction for 

continuation of cycle.  

b). Length of time between two successive orders is 𝑇, 

which is known as cycle time. 

c). Items in inventory of the system are reviewed 

regularly at time interval 𝑇 between two successive 

orders, which is the fixed. At the termination of each 

interval of length  𝑇 , items are ordered so as to bring 

the on-hand inventory level to a level 𝑄. 

d). In the time interval 𝑇 , demand 𝑥  follows a 

probability density function (p.d.f.) 𝑓(𝑥 |𝑇) ,  

𝑎(𝑇) ≤ 𝑥 ≤ 𝑏(𝑇)  with 𝜇(𝑇) = 𝐸(𝑥|𝑇 ) 

= ∫ 𝑥𝑓(𝑥|𝑇)𝑑𝑥 =
𝑏(𝑇)

𝑎(𝑇)
𝑅𝑇(say)      (1) in continuous 

sense, where 𝜇(𝑇) is the mean demand during 𝑇 and 

𝑅 =
𝜇(𝑇)

𝑇
 denotes the average expected demand per 

unit time during a cycle. It is also assumed that the 

p.d.f. 𝑓(𝑥 |𝑇) of the demand 𝑥  during 𝑇  is 

adequately well performed so as to all the expected 

costs discussed below exist. Correspondingly, the 

distribution of the demand is expected to be fixed 

over the planning horizon 𝑇. 

e). In the procedure of obtaining the definite result, it is 

assumed that the forms of the maximum annual 

demand  𝑏(𝑇)  as (𝑇) = 𝑃𝑅𝑇 , where 𝑃 ≥ 1  is a 

known constant. 

f). Replenishment or renewal rate is infinite. Lead-time 

is zero. Shortages are not acceptable. 

g). Supplier offers delay period when number of ordering 

quantity is greater or equal to 𝑊. 

h). 𝐴, 𝐶, 𝑆 and 𝐻 are the cost for placing per order, unit 

buying cost per item, unit retailing/selling cost per 

item and unit stock holding cost per item per unit time 

respectively and are known constants. It is also 

presumed that 𝑆 ≥ 𝐶. 

i). To encourage retailer to buy bigger substances or 

amount, it is supposed that if the retailer buys 

products from supplier fewer than a fixed amount 𝑊 

(say) then the retailer will not get some facilities such 

as delay in payment. Consequently, delay period is 

increasing function of 𝑄. For easiness, in this paper, it 

is assumed that the delay period is linearly dependent 

on ordering quantity. i.e., if 𝑄 ≥ 𝑊, a variable credit 

period 𝑀 (𝑀0+𝛼 𝑄; 𝛼 ∈ [0,1]), is allowed; else a 
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delay in payment is not permitted. The motives 

behind for selecting such value of 𝛼 is that, if 𝛼 < 0 

then 𝑀0+𝛼  𝑄  will be a decreasing function of  𝑄 

which is unrealistic supposition. If 𝛼 > 1 then the 

delay period will be so high that the supplier may face 

some problem to capitalize his personal turnover. He 

will face cash flow problem. So, it is assumed. But, 

normally 𝛼 should be in [0, 𝑎], where 𝑎 is close to 

0 and less than 1. 

j). The supplier provides a fixed credit period 𝑀  to 

settle the accounts to the retailer and the retailer, in 

turn, also off ers a credit period 𝑁  to each of its 

customers to settle the accounts, where 𝑀 ≥ 𝑁. 

k). When the retailer must pay the amount of buying cost 

to the supplier, the retailer will borrow 100% 

purchasing cost from the bank to pay back the account 

with rate 𝐼𝑝 . When 𝑇 ≥ 𝑀 , the retailer returns 

money to the bank at the termination of the inventory 

cycle. However, when ≤  𝑀 , the retailer returns 

money to the bank at 𝑇 = 𝑀. 

l). If the credit period is shorter than the cycle time, the 

retailer can sell the items, gather sales revenue and 

receives interest with rate 𝐼𝑒  all over the inventory 

cycle, where 𝐼𝑝 ≥ 𝐼𝑒 . 

m). 𝑇𝑉𝐶(𝑇), a function of 𝑇 , is the total relevant cost 

and 𝑇∗ is the optimal cycle time. 

3. Model Formulation 

The differential equation describing the inventory 

position 𝑄𝑥(𝑡)(0 ≤  𝑡 ≤  𝑇)  of the system during the 

scheduling period 𝑇 is 

 
𝑑𝑄𝑥(𝑡)

𝑑𝑡
= −

𝑥

𝑇
                  (2) 

Using the boundary condition 𝑄𝑥(0)=𝑄, the solution of 

equation (2) is 

 𝑄𝑥(𝑡) = 𝑄 −
𝑥

𝑇
𝑡, 0 ≤  𝑡 ≤  𝑇          (3) 

Since shortages are not permissible, using the state 

𝑄𝑥(𝑇) = 0 when 𝑥 = 𝑏(𝑇),  

we find 𝑄 =  𝑏(𝑇)                 (4) 

By means of equation (4), (3) turns into 

 𝑄𝑥(𝑡) = 𝑏(𝑇) −
𝑥

𝑇
𝑡                (5) 

The average expected inventory in the system for every 

unit time is 
1

𝑇
∫ 𝐸(𝑄𝑥(𝑡))𝑑𝑡
𝑇

0
=(2𝑃 − 1)

𝑅𝑇

2
 . 

The total annual variable cost involves the following 

elements. Two circumstances may arise. 

I. 
𝑊

𝑃𝑅
≤  𝑀 =  𝑀0 + 𝛼 𝑃𝑅𝑇 

II. 
𝑊

𝑃𝑅
>  𝑀 =  𝑀0 + 𝛼 𝑃𝑅𝑇 

Case I: 
𝑾 

𝑷𝑹
 ≤  𝑴 =  𝑴𝟎  +  𝜶𝑷𝑹𝑻. 

(a) Ordering cost per unit time = 
𝐴

𝑇
 .  

(b) Stock holding cost per unit time (2𝑃 − 1)
𝑅𝑇𝐻

2
. 

(c) Now according to the norms, three probable cases can 

happen specifically 0 <  𝑇 <  
𝑊

𝑃𝑅
 , 

𝑊

𝑃𝑅
  ≤  𝑇 ≤  𝑀  and 

𝑇 ≥  𝑀. These three cases are treated distinctly which are 

discussed below. 

Case (i) 𝟎 <  𝑻 <  
𝑾

𝑷𝑹
  

Expected interest payable per unit time = 
𝐶𝑄𝑇𝐼𝑝

𝑇
 =

 𝐶𝐼𝑝𝑃𝑅𝑇 . Expected interest earned per unit time = 
𝑆𝐼𝑒

𝑇
 ∫ 𝐸 (

𝑥

𝑇
) 𝑡𝑑𝑡

𝑇

0
 =  

𝑅𝑇𝑆𝐼𝑒

2
  . 

Case (ii) 
𝑾

𝑷𝑹
  ≤  𝑻 ≤  𝑴  

Expected interest payable per unit time=0. Expected 

interest earned per unit time = 
𝑆𝐼𝑒

𝑇
 [
𝑅𝑇2

2
+  𝑅𝑇(𝑀 − 𝑇)] =

 𝑅𝑆𝐼𝑒 [𝑀0  +  𝛼𝑃𝑅𝑇 − 
𝑇 

2
]. 

Case (iii) 𝑻 ≥  𝑴 =  𝑴𝟎  +  𝜶𝑷𝑹𝑻  

Expected interest payable per unit time =
𝐶𝑄(𝑇−𝑀)𝐼𝑝

𝑇
 

=
𝐶𝑃𝑅(𝑇−𝑀0−𝛼𝑃𝑅𝑇)𝐼𝑝

𝑇
. 

Expected interest earned per unit time = 
𝑆𝐼𝑒

𝑇
 ∫ 𝐸 (

𝑥

𝑇
) 𝑡𝑑𝑡

𝑇

0
 =  

𝑅𝑇𝑆𝐼𝑒

2
 . 

From the above arguments, the appropriate total cost per 

unit time for the retailer can be stated as 

𝑇𝑉𝐶(𝑇) = {

𝑇𝑉𝐶1(𝑇),     𝑖𝑓 0 <  𝑇 <  
𝑊

𝑃𝑅
 

𝑇𝑉𝐶2(𝑇),   𝑖𝑓
 𝑊

𝑃𝑅
 ≤  𝑇 ≤  𝑀0 +  𝛼𝑃𝑅𝑇

𝑇𝑉𝐶3 (𝑇),   𝑖𝑓 𝑀 0 +  𝛼𝑃𝑅𝑇 ≤  𝑇

   (6) 

Where, 

𝑇𝑉𝐶1(𝑇)  =
𝐴

𝑇
+ (2𝑃 − 1)

𝑅𝑇𝐻

2
+ 𝐶𝐼𝑝𝑃𝑅𝑇 −

𝑅𝑇𝑆𝐼𝑒

2
   (7) 

𝑇𝑉𝐶2(𝑇) =
𝐴

𝑇
+ (2𝑃 − 1)

𝑅𝑇𝐻

2
 -𝑅𝑆𝐼𝑒 [𝑀0 + 𝛼𝑃𝑅𝑇 −

𝑇 

2
]                

(8) 

𝑇𝑉𝐶3(𝑇) =
𝐴

𝑇
+ (2𝑃 − 1)

𝑅𝑇𝐻

2
+

𝐶𝑃𝑅(𝑇−𝑀0−𝛼𝑃𝑅𝑇)𝐼𝑝

𝑇
−

𝑅𝑇𝑆𝐼𝑒

2
             

(9) 

All 𝑇𝑉𝐶1(𝑇), 𝑇𝑉𝐶2(𝑇), and 𝑇𝑉𝐶3(𝑇) are defined on 

𝑇 >  0. 

Equations (7)-(9) produce 

𝑇𝑉𝐶1
′(𝑇)  =  −

𝐴

𝑇2
 +

𝑅(𝐻(2𝑃 −1) + 2𝐶𝐼𝑝𝑃 −𝑆𝐼𝑒) 

2
     (10) 
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𝑇𝑉𝐶1
′′(𝑇)  =  

2𝐴

𝑇3
> 0             (11) 

𝑇𝑉𝐶2
′(𝑇)  =  −

𝐴

𝑇2
 +

𝑅(𝐻(2𝑃 −1)− 2𝑆𝐼𝑒𝛼𝑃𝑅+𝑆𝐼𝑒) 

2
   (12) 

𝑇𝑉𝐶2
′′(𝑇)  =  

2𝐴

𝑇3
> 0             (13) 

𝑇𝑉𝐶3
′(𝑇)  =  −

𝐴

𝑇2
 +

𝑅(𝐻(2𝑃 −1)+ 2𝐶𝐼𝑝𝑃− 2𝐶𝐼𝑝𝛼𝑃
2𝑅−𝑆𝐼𝑒) 

2
 (14) 

𝑇𝑉𝐶3
′′(𝑇)  =  

2𝐴

𝑇3
> 0            (15) 

Equations (11), (13) and (15) imply that 𝑇𝑉𝐶1(𝑇) , 

𝑇𝑉𝐶2(𝑇) and 𝑇𝑉𝐶3(𝑇) are convex for 𝑇 >  0. 

Case II: 
𝑾 

𝑷𝑹
>  𝑴 =  𝑴𝟎  +  𝜶𝑷𝑹𝑻.  

In this case equation (6) can be written as follows: 

𝑇𝑉𝐶(𝑇)  = {

𝑇𝑉𝐶1(𝑇), 𝑖𝑓 0 <  𝑇 <  
𝑊

𝑃𝑅
 

 

𝑇𝑉𝐶3 (𝑇),                  𝑖𝑓 𝑇 ≥
𝑊

𝑃𝑅

    (16) 

Here 𝑇𝑉𝐶(𝑇) is continuous except at 𝑇 =
𝑊

𝑃𝑅
. 

Now solving 𝑇𝑉𝐶𝑖
′(𝑇) = 0 for  =  1,2,3 , we obtain 

𝑇1
∗ = √

2𝐴

𝑅(𝐻(2𝑃 −1) + 2𝐶𝐼𝑝𝑃 −𝑆𝐼𝑒)
   if 𝑅(𝐻(2𝑃 − 1)  +

 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒) > 0 

𝑇2
∗ = √

2𝐴

𝑅(𝐻(2𝑃 −1)− 2𝑆𝐼𝑒𝛼𝑃𝑅+𝑆𝐼𝑒)
  if 𝑅(𝐻(2𝑃 − 1) −

 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒) > 0 

𝑇3
∗ = √

2𝐴

𝑅(𝐻(2𝑃 −1)+ 2𝐶𝐼𝑝𝑃− 2𝐶𝐼𝑝𝛼𝑃
2𝑅−𝑆𝐼𝑒)

  if 𝑅(𝐻(2𝑃 −

1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒) > 0 

By the convexity of 𝑇𝑉𝐶𝑖(𝑇)(𝑖 =  1,2,3), it is detected 

that 

𝑇𝑉𝐶𝑖
′(𝑇) = {

< 0 , if 𝑇 < 𝑇𝑖
∗

= 0 , if 𝑇 = 𝑇𝑖
∗ 

> 0, if  𝑇 > 𝑇𝑖
∗
            (17) 

4. Decision Rule of the Optimal Cycle 

Time When 
𝑾 

𝑷𝑹
≤ 𝑴 = 𝑴𝟎 + 𝜶𝑷𝑹𝑻 

In this case two possibilities may arise namely 𝛼𝑃𝑅 ≥
 1 and 𝑅 <  1 . These two cases are treated separately 

which are discussed below 

Case (i) 𝜶𝑷𝑹 ≥  𝟏 

Here 𝑇𝑉𝐶(𝑇)  will be modified as (since 𝛼𝑃𝑅 ≥  1 

and so 𝑇 can be grater than or equal to  𝑀0  +  𝛼𝑃𝑅𝑇) 

𝑇𝑉𝐶(𝑇)  = {

𝑇𝑉𝐶1(𝑇), 𝑖𝑓 0 <  𝑇 <  
𝑊

𝑃𝑅
 

 

𝑇𝑉𝐶2 (𝑇),                  𝑖𝑓 𝑇 ≥
𝑊

𝑃𝑅

     (18) 

Here also 𝑇𝑉𝐶(𝑇) is continuous except at 𝑇 =
𝑊

𝑃𝑅
. 

In this case Equations (10) and (12) yield 

𝑇1
∗≥

𝑊

𝑃𝑅
 implies 𝑇𝑉𝐶1

′ (
𝑊

𝑃𝑅
 )≤ 0 and hence𝑇𝑉𝐶1(𝑇) is 

decreasing on (0,
𝑊

𝑃𝑅
 )             (19) 

𝑇2
∗<

𝑊

𝑃𝑅
 implies 𝑇𝑉𝐶2

′ (
𝑊

𝑃𝑅
 ) > 0 and hence𝑇𝑉𝐶2(𝑇) is 

increasing on [
𝑊

𝑃𝑅
, ∞ )           (20) 

Furthermore, it follows the result 

Theorem 1. (A) Suppose that 𝐻(2𝑃 − 1) −
 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 < 0  then 𝑇 ∗ =  ∞  and 𝑇𝑉𝐶( 𝑇 ∗)  =
 −∞ ie., the retailer will try to continue his cycle as much 

as possible. 

Proof: If 𝐻(2𝑃 − 1) −  2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 < 0, Equation 

(12) implies that 𝑇𝑉𝐶(𝑇) is decreasing for 𝑇 ≥
𝑊

𝑃𝑅
. Since 

lim
𝑇→∞

𝑇𝑉𝐶(𝑇)  =  −𝑅𝑆𝐼𝑒𝑀0  +  lim
𝑇→∞

𝑅𝑇

2
(𝐻(2𝑃 − 1) −

 2𝑆𝐼𝑒𝛼𝑃𝑅 +  𝑆𝐼𝑒) =  −∞ 𝑎𝑛𝑑 lim
𝑇→0+

𝑇𝑉𝐶(𝑇)  = ∞ so we 

conclude that 𝑇 ∗ =  ∞ and 𝑇𝑉𝐶( 𝑇 ∗)  =  −∞ 

(B) Suppose that 𝐻(2𝑃 − 1) −  2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 = 0 

then 𝑅(𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 −  𝑆𝐼𝑒 >  0 (since 𝛼𝑃𝑅 ≥

 1) and 

(a) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
, then 𝑇 ∗ =  ∞  and 𝑇𝑉𝐶( 𝑇 ∗) = 

−𝑅𝑆𝐼𝑒𝑀0 

(b) If 𝑇1
∗ <

𝑊

𝑃𝑅
, then 𝑇𝑉𝐶( 𝑇 ∗)= min [𝑇𝑉𝐶1(𝑇1

∗) −

𝑅𝑆𝐼𝑒𝑀0]  and 𝑇 ∗ = 𝑇1
∗ or ∞  associated with the least 

cost).  

Proof: (a) If 𝐻(2𝑃 − 1) −  2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 = 0 

and  𝑇1
∗ ≥  

𝑊

𝑃𝑅
 then equation (12) and (17) imply that 

𝑇𝑉𝐶(𝑇)  is decreasing on (0,∞).  Consequently 𝑇∗  =
 ∞ and 𝑇𝑉𝐶(𝑇∗)  =  ∞. 

(b) If 𝐻(2𝑃 − 1) −  2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 = 0 and 𝑇1
∗<

𝑊

𝑃𝑅
 , 

then equation (12) and (17) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, 𝑇1
∗) , increasing on [𝑇1

∗,
𝑊

𝑃𝑅
)  and 

decreasing on [
𝑊

𝑃𝑅
, ∞) . Hence 𝑇 ∗ = 𝑇1

∗ or ∞ associated 

with the least cost) and 𝑇𝑉𝐶( 𝑇 ∗)= min [𝑇𝑉𝐶1(𝑇1
∗) −

𝑅𝑆𝐼𝑒𝑀0]. 

(C) Suppose that  𝐻(2𝑃 − 1) −  2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 

then 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 −  𝑆𝐼𝑒 > 0 (since 𝛼𝑃𝑅 ≥  1) 

and  
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(a) If 𝑇1
∗ <

𝑊

𝑃𝑅
 , 𝑇2

∗ <
𝑊

𝑃𝑅
 then 𝑇∗ = 𝑇1

∗ and 

𝑇𝑉𝐶( 𝑇 ∗)= 𝑇𝑉𝐶1(𝑇1
∗). 

(b) If 𝑇1
∗ <

𝑊

𝑃𝑅
 , 𝑇2

∗ ≥
𝑊

𝑃𝑅
 then 𝑇∗ = 𝑇1

∗  or 𝑇2
∗  

(associated with the least cost) and 𝑇𝑉𝐶( 𝑇 ∗) = min 
[𝑇𝑉𝐶1(𝑇1

∗), 𝑇𝑉𝐶2(𝑇2
∗)]. 

(c) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 , 𝑇2

∗ <
𝑊

𝑃𝑅
 then 𝑇∗ =

𝑊

𝑃𝑅
  and 

𝑇𝑉𝐶( 𝑇 ∗)= 𝑇𝑉𝐶2(
𝑊

𝑃𝑅
). 

(d) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 , 𝑇2

∗ ≥
𝑊

𝑃𝑅
 then 𝑇∗ = 𝑇2

∗  and 

𝑇𝑉𝐶( 𝑇 ∗)= 𝑇𝑉𝐶2( 𝑇2
∗). 

Proof: (a) If 𝑇1
∗ <

𝑊

𝑃𝑅
 , 𝑇2

∗ <
𝑊

𝑃𝑅
 then Equations (17) 

and (20) imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0, 𝑇1
∗] , 

increasing on [𝑇1
∗,
𝑊

𝑃𝑅
)  and decreasing on [

𝑊

𝑃𝑅
, ∞) . 

Consequently 𝑇∗ = 𝑇1
∗ and 𝑇𝑉𝐶( 𝑇 ∗)= 𝑇𝑉𝐶1(𝑇1

∗). 

(b) If 𝑇1
∗ <

𝑊

𝑃𝑅
 , 𝑇2

∗ ≥
𝑊

𝑃𝑅
 then (17) implies that 

𝑇𝑉𝐶(𝑇) is decreasing on (0, 𝑇1
∗], increasing on [𝑇1

∗,
𝑊

𝑃𝑅
)  , 

decreasing on [
𝑊

𝑃𝑅
, 𝑇2

∗  ] and increasing on [𝑇2
∗ , ∞) . 

Consequently, 𝑇∗ = 𝑇1
∗  or 𝑇2

∗  (associated with the least 

cost) and 𝑇𝑉𝐶( 𝑇 ∗)= min [𝑇𝑉𝐶1(𝑇1
∗), 𝑇𝑉𝐶2(𝑇2

∗)]. 

(c) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 , 𝑇2

∗ <
𝑊

𝑃𝑅
 then Equations (19) and (20) 

imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0,
𝑊

𝑃𝑅
 )  and 

increasing on [ 
𝑊

𝑃𝑅
 , ∞) . Consequently 𝑇∗ =

𝑊

𝑃𝑅
  and 

𝑇𝑉𝐶( 𝑇 ∗)= 𝑇𝑉𝐶2(
𝑊

𝑃𝑅
). 

(d) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 , 𝑇2

∗ ≥
𝑊

𝑃𝑅
 then Equations (19) and (17) 

imply that 𝑇𝑉𝐶(𝑇) is decreasing on (0,
𝑊

𝑃𝑅
 ), decreasing 

on [
𝑊

𝑃𝑅
, 𝑇2

∗  ], and increasing on [𝑇2
∗ , ∞).Consequently 

𝑇∗ = 𝑇2
∗  and 𝑇𝑉𝐶( 𝑇 ∗)= 𝑇𝑉𝐶2( 𝑇2

∗). 

Case (ii) 𝜶𝑷𝑹 <  𝟏 

Here 𝑇𝑉𝐶(𝑇) will be modified as 𝑇𝑉𝐶(𝑇)  =

{
 
 

 
 𝑇𝑉𝐶1(𝑇),           𝑖𝑓 0 <  𝑇 <  

𝑊

𝑃𝑅
 

 𝑇𝑉𝐶2(𝑇),    𝑖𝑓
 𝑊

𝑃𝑅
 ≤  𝑇 ≤  

𝑀0

1−𝛼𝑃𝑅

𝑇𝑉𝐶3 (𝑇),                𝑖𝑓
𝑀0

1−𝛼𝑃𝑅
 ≤  𝑇

         (21) 

In this case Equations (10), (12) and (14) yield that 

𝑇1
∗≥

𝑊

𝑃𝑅
 implies 𝑇𝑉𝐶1

′ (
𝑊

𝑃𝑅
 )≤ 0 and hence  𝑇𝑉𝐶1(𝑇) is 

decreasing on (0,
𝑊

𝑃𝑅
 )            (22) 

𝑇2
∗ <

𝑊

𝑃𝑅
 implies 𝑇𝑉𝐶2

′ (
𝑊

𝑃𝑅
 ) > 0 and hence 𝑇𝑉𝐶2(𝑇) is 

increasing on [ 
𝑊

𝑃𝑅
,

𝑀0

1−𝛼𝑃𝑅
 ]               (23) 

𝑇2
∗ >

𝑀0

1−𝛼𝑃𝑅
 implies 𝑇𝑉𝐶2

′ (
𝑀0

1−𝛼𝑃𝑅
 ) < 0 and hence 

𝑇𝑉𝐶2(𝑇) is decreasing on [ 
𝑊

𝑃𝑅
,

𝑀0

1−𝛼𝑃𝑅
 ]        (24) 

𝑇3
∗ <

𝑀0

1−𝛼𝑃𝑅
 implies 𝑇𝑉𝐶3

′ (
𝑀0

1−𝛼𝑃𝑅
 ) > 0 and hence 

𝑇𝑉𝐶3(𝑇) is increasing on [ 
𝑀0

1−𝛼𝑃𝑅
, ∞)         (25) 

Furthermore, the result follows. 

Theorem 2. (A) Suppose that 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −
 2𝐶𝐼𝑝𝛼𝑃

2𝑅 − 𝑆𝐼𝑒 < 0  then 𝑇∗  =  ∞ and 𝑇𝑉𝐶(𝑇∗)  =

 ∞.ie., the retailer will try to continue his cycle as much as 

possible. 

Proof. If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒  < 

0, then equations (14) and (21) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing for 𝑇 ≥  
𝑀0

1−𝛼𝑃𝑅
 . Since lim

𝑇→∞
𝑇𝑉𝐶(𝑇) =

 −𝐶𝐼𝑝𝑃𝑅𝑀0 + lim
𝑇→∞

𝑅𝑇

2
(𝐻(2𝑃 − 1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒) =

 −∞ and lim
𝑇→0+

𝑇𝑉𝐶(𝑇) =  ∞ 𝑠𝑜  𝑇∗  =

 ∞ and 𝑇𝑉𝐶(𝑇∗)  =  ∞. 

(B) Suppose that 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −

 2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 = 0 then 

(i) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 = 0 and 𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  ≤ 0 then   𝑇∗  =
 ∞ and 𝑇𝑉𝐶(𝑇∗)  =  −𝐶𝐼𝑝𝑃𝑅𝑀0. 

(ii) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  = 0 and 𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 then 

(a) If 𝑇2
∗ >

𝑀0

1−𝛼𝑃𝑅
 then   𝑇∗  =  ∞ and 𝑇𝑉𝐶(𝑇∗)  =

 −𝐶𝐼𝑝𝑃𝑅𝑀0. 

(b) If 
𝑊

𝑃𝑅
≤ 𝑇2

∗ ≤ 
𝑀0

1−𝛼𝑃𝑅
 then 𝑇∗ = 𝑇2

∗ or ∞ (associated 

with the least cost)  𝑇𝑉𝐶(𝑇∗) = min [ 𝑇𝑉𝐶2( 𝑇2
∗) , 

−𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(c) If 𝑇2
∗ < 

𝑊

𝑃𝑅
 then 𝑇∗  =  

𝑊

𝑃𝑅
 or ∞ (associated with the 

least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶2( 
𝑊

𝑃𝑅
), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(iii) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 and 𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 ≤ 0 then 

(a) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
 then 𝑇∗  =  ∞ and 𝑇𝑉𝐶(𝑇∗)  =

 −𝐶𝐼𝑝𝑃𝑅𝑀0.  

(b) If 𝑇1
∗ <

𝑊

𝑃𝑅
 then 𝑇∗ = 𝑇1

∗ or ∞ (associated with the 

least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(iv) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 and 𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 then 

(a) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
 and 𝑇2

∗ >
𝑀0

1−𝛼𝑃𝑅
 then 𝑇∗  =

 ∞ and 𝑇𝑉𝐶(𝑇∗)  =  −𝐶𝐼𝑝𝑃𝑅𝑀0. 

(b) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
 and 

𝑊

𝑃𝑅
 ≤ 𝑇2

∗  ≤ 
𝑀0

1−𝛼𝑃𝑅
 then 𝑇∗ = 𝑇2

∗  or 
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∞(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min 

[𝑇𝑉𝐶2( 𝑇2
∗), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(c) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
 and 𝑇2

∗  < 
𝑊

𝑃𝑅
 then 𝑇∗  = 

𝑊

𝑃𝑅
 or ∞ 

(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min 

[𝑇𝑉𝐶2( 
𝑊

𝑃𝑅
 ), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(d) If 𝑇1
∗  < 

𝑊

𝑃𝑅
 and 𝑇2

∗ >
𝑀0

1−𝛼𝑃𝑅
 then 𝑇∗ = 𝑇1

∗  or ∞ 

(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), 

−𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(e) If 𝑇1
∗  < 

𝑊

𝑃𝑅
 and 

𝑊

𝑃𝑅
 ≤ 𝑇2

∗  ≤ 
𝑀0

1−𝛼𝑃𝑅
 then  𝑇∗ = 𝑇2

∗  , 

𝑇1
∗ or ∞ (associated with the least cost) ) 𝑇𝑉𝐶(𝑇∗) = min 

[𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2( 𝑇2

∗), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(f) If 𝑇1
∗  < 

𝑊

𝑃𝑅
 and 𝑇2

∗  < 
𝑊

𝑃𝑅
 then 𝑇∗ = 𝑇1

∗ , 
𝑊

𝑃𝑅
 or ∞ 

(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), 

𝑇𝑉𝐶2( 
𝑊

𝑃𝑅
 ), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

Proof: (i) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 −

𝑆𝐼𝑒 = 0, 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 = 0 and 𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 ≤ 0 then Equations (10), (12) and (14) 

imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0,∞) . 

Since lim
𝑇→∞

𝑇𝑉𝐶(𝑇) =  −𝐶𝐼𝑝𝑃𝑅𝑀0 + lim
𝑇→∞

𝑅𝑇

2
(𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒) = −𝐶𝐼𝑝𝑃𝑅𝑀0 and lim
𝑇→0+

𝑇𝑉𝐶(𝑇) =

 ∞ 𝑠𝑜  𝑇∗  =  ∞ and 𝑇𝑉𝐶(𝑇∗)  = −𝐶𝐼𝑝𝑃𝑅𝑀0 . 

(ii)(a) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒= 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 = 0 and 𝑇2
∗ >

𝑀0

1−𝛼𝑃𝑅
 then 

Equations (10),(14) and (24) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, ∞). Consequently 𝑇∗  =
 ∞ and 𝑇𝑉𝐶(𝑇∗)  = −𝐶𝐼𝑝𝑃𝑅𝑀0   

(b) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 = 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 = 0 and 
𝑊

𝑃𝑅
≤ 𝑇2

∗ ≤

 
𝑀0

1−𝛼𝑃𝑅
then Equation (10),(14) and (17) imply that 𝑇𝑉𝐶(𝑇) 

is decreasing on (0, 𝑇2
∗ ], increasing on [𝑇2

∗, 
𝑀0

1−𝛼𝑃𝑅
 ] and 

decreasing on [ 
𝑀0

1−𝛼𝑃𝑅
, ∞) . Consequently 𝑇∗ = 𝑇2

∗ or ∞ 

(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶2( 𝑇2
∗), 

−𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(c) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 = 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 = 0 and 𝑇2
∗ < 

𝑊

𝑃𝑅
 then 

Equations (10), (14) and (23) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0
𝑊

𝑃𝑅
] , increasing on [

𝑊

𝑃𝑅
, 

𝑀0

1−𝛼𝑃𝑅
] and 

decreasing on[ 
𝑀0

1−𝛼𝑃𝑅
, ∞). Consequently 𝑇∗  =  

𝑊

𝑃𝑅
 or ∞ 

(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶2( 
𝑊

𝑃𝑅
), 

−𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(iii) (a)If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 > 0, 𝐻(2𝑃 −

1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  ≤ 0 and 𝑇1
∗  ≥

𝑊

𝑃𝑅
 then Equations 

(12),(14) and (22) imply that 𝑇𝑉𝐶(𝑇) is decreasing on (0, 

∞). Consequently 𝑇∗ =  ∞ and 𝑇𝑉𝐶(𝑇∗)  =  −𝐶𝐼𝑝𝑃𝑅𝑀0. 

(b) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒   > 0, 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 ≤ 0 and 𝑇1
∗ <

𝑊

𝑃𝑅
 then Equations (12),(14) 

and (17) imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0, 𝑇1
∗ ], 

increasing on ( 𝑇1
∗ , 

𝑊

𝑃𝑅
) and decreasing on [

𝑊

𝑃𝑅
 , ∞). 

Consequently 𝑇∗ = 𝑇1
∗ or ∞ (associated with the least cost) 

𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(iv)(a) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒>0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 >0, 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 𝑇2

∗ >
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (14), (22) and (24) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on [0,∞). Consequently 𝑇∗ =
∞ and 𝑇𝑉𝐶(𝑇∗)  = −𝐶𝐼𝑝𝑃𝑅𝑀0. 

(b) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 , 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 

𝑊

𝑃𝑅
 ≤ 𝑇2

∗ ≤ 
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (14), (22) and (17) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, 𝑇2
∗ ] , increasing on [𝑇2

∗ , 
𝑀0

1−𝛼𝑃𝑅
] and 

decreasing on [
𝑀0

1−𝛼𝑃𝑅
, ∞). Consequently 𝑇∗ = 𝑇2

∗  or 

∞(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min 

[𝑇𝑉𝐶2( 𝑇2
∗), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(c) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0, 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 𝑇2

∗< 
𝑊

𝑃𝑅
 then Equations 

(14), (22) and (23) imply that 𝑇𝑉𝐶(𝑇) is decreasing on (0, 
𝑊

𝑃𝑅
) , increasing on [ 

𝑊

𝑃𝑅
, 

𝑀0

1−𝛼𝑃𝑅
 ] and decreasing on [

𝑀0

1−𝛼𝑃𝑅
, 

∞). Consequently 𝑇∗ = 
𝑊

𝑃𝑅
 or ∞ (associated with the least 

cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶2( 
𝑊

𝑃𝑅
 ), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(d) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0, 𝑇1
∗  <

𝑊

𝑃𝑅
and 𝑇2

∗  > 
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (14), (17) and (24) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, 𝑇1
∗ ] , increasing on [ 𝑇1

∗ , 
𝑊

𝑃𝑅
) and 

decreasing on [ 
𝑊

𝑃𝑅
, ∞). Consequently 𝑇∗ = 𝑇1

∗  or ∞ 

(associated with the least cost) 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), 

−𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(e) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0, 𝑇1
∗ <

𝑊

𝑃𝑅
 and 

𝑊

𝑃𝑅
≤  𝑇2

∗ ≤ 
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (14)and (17) imply that 𝑇𝑉𝐶(𝑇) is decreasing 

on (0, 𝑇1
∗] , increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
), decreasing on [

𝑊

𝑃𝑅
, 𝑇2

∗] , 

increasing on [𝑇2
∗, 

𝑀0

1−𝛼𝑃𝑅
] and decreasing on [

𝑀0

1−𝛼𝑃𝑅
, ∞) . 

Consequently 𝑇∗ = 𝑇2
∗, 𝑇1

∗ or ∞ (associated with the least 

cost) T𝑉𝐶(𝑇∗) =min[𝑇𝑉𝐶1( 𝑇1
∗),𝑇𝑉𝐶2( 𝑇2

∗), −𝐶𝐼𝑝𝑃𝑅𝑀0] 

(f) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0, 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 >0, 𝑇1
∗ <

𝑊

𝑃𝑅
 and 𝑇2

∗ <
𝑊

𝑃𝑅
 then Equations 

(14),(17) and (23) imply that 𝑇𝑉𝐶(𝑇) is decreasing on (0, 

𝑇1
∗], increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
), increasing on [ 

𝑊

𝑃𝑅
, 

𝑀0

1−𝛼𝑃𝑅
) and 
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decreasing on [
𝑀0

1−𝛼𝑃𝑅
, ∞). Since lim

𝑇→
𝑊

𝑃𝑅

𝑇𝑉𝐶1(𝑇) > 𝑇𝑉𝐶2(
𝑊

𝑃𝑅
), 

so we conclude that 𝑇∗ = 𝑇1
∗, 

𝑊

𝑃𝑅
 or ∞ (associated with the 

least cost) 𝑇𝑉𝐶(𝑇∗) = min[ 𝑇𝑉𝐶1( 𝑇1
∗) ,  

𝑇𝑉𝐶2( 
𝑊

𝑃𝑅
 ), −𝐶𝐼𝑝𝑃𝑅𝑀0 ](C) Suppose that 𝐻(2𝑃 − 1) +

 2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 −

𝑆𝐼𝑒> 0 and 

(i) if 𝐻(2𝑃 − 1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 ≤ 0 then 

(a) If 𝑇1
∗  <

𝑊

𝑃𝑅
and 𝑇3

∗  ≥ 
𝑀0

1−𝛼𝑃𝑅
 then  𝑇𝑉𝐶(𝑇∗)= min 

[𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3( 𝑇3

∗)] and 𝑇∗  = 𝑇1
∗  or 𝑇3

∗  (associated 

with the least cost).  

(b) If 𝑇1
∗  <

𝑊

𝑃𝑅
 and 𝑇3

∗  < 
𝑀0

1−𝛼𝑃𝑅
 then  𝑇𝑉𝐶(𝑇∗)= min 

[ 𝑇𝑉𝐶1( 𝑇1
∗) , 𝑇𝑉𝐶3( 

𝑀0

1−𝛼𝑃𝑅
) ] and 𝑇∗  = 𝑇1

∗  or 
𝑀0

1−𝛼𝑃𝑅
 

(associated with the least cost).  

(c) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
and 𝑇3

∗  ≥ 
𝑀0

1−𝛼𝑃𝑅
 then 𝑇𝑉𝐶(𝑇∗) = 

𝑇𝑉𝐶3( 𝑇3
∗) and  𝑇∗ = 𝑇3

∗. 

(d) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
 and 𝑇3

∗  < 
𝑀0

1−𝛼𝑃𝑅
  then 𝑇𝑉𝐶(𝑇∗) = 

𝑇𝑉𝐶3 ( 
𝑀0

1−𝛼𝑃𝑅
  ) and  𝑇∗ = 

𝑀0

1−𝛼𝑃𝑅
 . 

(ii) if 𝐻(2𝑃 − 1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 then 

(a) If 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗  <
𝑊

𝑃𝑅
 and 𝑇3

∗  < 
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2( 

𝑊

𝑃𝑅
)] and 𝑇∗ = 𝑇1

∗ or 
𝑊

𝑃𝑅
 (associated with the least cost). 

(b) If 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗  <
𝑊

𝑃𝑅
 and 𝑇3

∗  ≥
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3( 𝑇3

∗)] and 𝑇∗ = 𝑇1
∗ or 

𝑇3
∗ (associated with the least cost). 

(c ) If 𝑇1
∗ <

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
  and 𝑇3

∗ < 
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2(𝑇2

∗)] and 𝑇∗ = 𝑇1
∗ or 

𝑇2
∗ (associated with the least cost). 

(d) If 𝑇1
∗ <

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
  and 𝑇3

∗ ≥ 
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2(𝑇2

∗), 𝑇𝑉𝐶3(𝑇3
∗)] and 

𝑇∗ = 𝑇1
∗ or 𝑇2

∗ or 𝑇3
∗ (associated with the least cost). 

(e) If 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗ > 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  <  
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3(

𝑀0

1−𝛼𝑃𝑅
 )] and 𝑇∗ = 𝑇1

∗ 

or 
𝑀0

1−𝛼𝑃𝑅
 (associated with the least cost). 

(f) If 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗ > 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  ≥  
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3(𝑇3

∗)] and 𝑇∗ = 𝑇1
∗ or 

𝑇3
∗ (associated with the least cost). 

(g) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 𝑇2

∗ <
𝑊

𝑃𝑅
and 𝑇3

∗ <
𝑀0

1−𝛼𝑃𝑅
 then 𝑇𝑉𝐶(𝑇∗)= 

𝑇𝑉𝐶2(
𝑊

𝑃𝑅
) and 𝑇∗ = 

𝑊

𝑃𝑅
. 

(h) If 𝑇1
∗  ≥

𝑊

𝑃𝑅
, 𝑇2

∗  <
𝑊

𝑃𝑅
and 𝑇3

∗  ≥
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶2(
𝑊

𝑃𝑅
), 𝑇𝑉𝐶3( 𝑇3

∗)] and 𝑇∗  = 
𝑊

𝑃𝑅
 or 

𝑇3
∗ (associated with the least cost). 

(i) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗ < 
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶2(𝑇2
∗) and 𝑇∗ = 𝑇2

∗. 

(j) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗ ≥ 
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶2(𝑇2
∗), 𝑇𝑉𝐶3(𝑇3

∗)] and 𝑇∗  = 𝑇2
∗ or 

𝑇3
∗ (associated with the least cost). 

(k) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 𝑇2

∗ > 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  <  
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)=𝑇𝑉𝐶2(
𝑀0

1−𝛼𝑃𝑅
 ) and 𝑇∗ = 

𝑀0

1−𝛼𝑃𝑅
 . 

(l) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 𝑇2

∗ > 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  ≥  
𝑀0

1−𝛼𝑃𝑅
 then 

𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶3(𝑇3
∗) and 𝑇∗ =  𝑇3

∗. 

Proof: (C) 

(i)(a) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒> 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0, 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  ≤ 0 and 𝑇1
∗  <

𝑊

𝑃𝑅
and 𝑇3

∗  ≥ 
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (12) and (17) imply that 𝑇𝑉𝐶(𝑇) is decreasing 

on (0, 𝑇1
∗], increasing on [𝑇1

∗,
𝑊

𝑃𝑅
), decreasing on [

𝑊

𝑃𝑅
, 𝑇3

∗], 

and increasing on [ 𝑇3
∗ ,∞). Hence 𝑇𝑉𝐶(𝑇∗) = min 

[𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3(𝑇3

∗)] and 𝑇∗  = 𝑇1
∗  or 𝑇3

∗  (associated 

with the least cost).  

(b) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  ≤ 0 and 𝑇1
∗  <

𝑊

𝑃𝑅
 and 𝑇3

∗  < 
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (12) , (17) and (25) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, 𝑇1
∗ ], increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
), decreasing 

on [ 
𝑊

𝑃𝑅
, 

𝑀0

1−𝛼𝑃𝑅
 ] , and increasing on [ 

𝑀0

1−𝛼𝑃𝑅
, ∞) . Hence 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3( 

𝑀0

1−𝛼𝑃𝑅
)] and 𝑇∗ = 𝑇1

∗ 

or 
𝑀0

1−𝛼𝑃𝑅
 (associated with the least cost).  

(c) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0, 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  ≤ 0, 𝑇1
∗  ≥

𝑊

𝑃𝑅
 and 𝑇3

∗  ≥ 
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (12) , (22) and(17) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, 𝑇3
∗] and increasing on [𝑇3

∗, ∞) . Hence 

𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶3( 𝑇3
∗) and 𝑇∗ = 𝑇3

∗. 

(d) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  ≤ 0, 𝑇1
∗  ≥

𝑊

𝑃𝑅
 and 𝑇3

∗ <
𝑀0

1−𝛼𝑃𝑅
 then 

Equations (12) , (22) and(25) imply that 𝑇𝑉𝐶(𝑇)  is 

decreasing on (0, 
𝑀0

1−𝛼𝑃𝑅
] and increasing on [

𝑀0

1−𝛼𝑃𝑅
, ∞). 

Hence 𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶3 ( 
𝑀0

1−𝛼𝑃𝑅
  ) and 𝑇∗ = 

𝑀0

1−𝛼𝑃𝑅
 . 
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(ii)(a) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒> 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 and 𝑇1
∗ <

𝑊

𝑃𝑅
, 𝑇2

∗ <
𝑊

𝑃𝑅
and 𝑇3

∗ < 
𝑀0

1−𝛼𝑃𝑅
 

then Equations (17),(23) and (25) imply that 𝑇𝑉𝐶(𝑇) is 

decreasing on (0, 𝑇1
∗] and increasing on [𝑇1

∗, ∞) . Since 

lim
𝑇→

𝑊

𝑃𝑅

𝑇𝑉𝐶1(𝑇)  > 𝑇𝑉𝐶2(
𝑊

𝑃𝑅
) , so we conclude that then 

T𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2( 

𝑊

𝑃𝑅
)] and 𝑇∗ = 𝑇1

∗ or 
𝑊

𝑃𝑅
 (associated with the least cost). 

(b) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗  <  
𝑊

𝑃𝑅
 and 𝑇3

∗  ≥
𝑀0

1−𝛼𝑃𝑅
 then Equations (17) and (23) imply that 𝑇𝑉𝐶(𝑇) is 

decreasing on (0, 𝑇1
∗ ] , increasing on [ 𝑇1

∗ , 
𝑀0

1−𝛼𝑃𝑅
], 

decreasing on [
𝑀0

1−𝛼𝑃𝑅
 , 𝑇3

∗ ] and increasing on [𝑇3
∗ , ∞). 

Hence 𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3( 𝑇3

∗)] and 𝑇∗ = 

𝑇1
∗ or 𝑇3

∗ (associated with the least cost). 

(c) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 and 𝑇1
∗ <

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
  and 

𝑇3
∗  < 

𝑀0

1−𝛼𝑃𝑅
then Equations (17) and (25) imply that 

𝑇𝑉𝐶(𝑇) is decreasing on (0, 𝑇1
∗ ] , increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
) , 

decreasing on [ 
𝑊

𝑃𝑅
, 𝑇2

∗] and increasing on [𝑇2
∗, ∞). Hence 

𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2(𝑇2

∗)] and 𝑇∗ = 𝑇1
∗ or 

𝑇2
∗ (associated with the least cost). 

(d) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 and 𝑇1
∗ <

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
  and 

𝑇3
∗ ≥ 

𝑀0

1−𝛼𝑃𝑅
 then Equation (17) implies that 𝑇𝑉𝐶(𝑇) is 

decreasing on (0, 𝑇1
∗] , increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
) , decreasing 

on [
𝑊

𝑃𝑅
, 𝑇2

∗] , increasing on [𝑇2
∗, 

𝑀0

1−𝛼𝑃𝑅
] , decreasing on 

[
𝑀0

1−𝛼𝑃𝑅
 , 𝑇3

∗] and increasing on [𝑇3
∗, ∞). Hence 𝑇𝑉𝐶(𝑇∗)= 

min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶2(𝑇2

∗), 𝑇𝑉𝐶3(𝑇3
∗)] and 𝑇∗ = 𝑇1

∗ or 

𝑇2
∗ or 𝑇3

∗ (associated with the least cost). 

(e) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗> 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  < 
𝑀0

1−𝛼𝑃𝑅
 then Equations (17), (24) and (25) imply that 

𝑇𝑉𝐶(𝑇) is decreasing on (0, 𝑇1
∗] , increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
) , 

decreasing on [ 
𝑊

𝑃𝑅
, 

𝑀0

1−𝛼𝑃𝑅
 ] and increasing on [ 

𝑀0

1−𝛼𝑃𝑅
, ∞) . 

Hence 𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3(

𝑀0

1−𝛼𝑃𝑅
 )] and 𝑇∗ 

= 𝑇1
∗ or 

𝑀0

1−𝛼𝑃𝑅
 (associated with the least cost). 

(f) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗  <

𝑊

𝑃𝑅
, 𝑇2

∗> 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  ≥ 
𝑀0

1−𝛼𝑃𝑅
 then Equations (17)and (24) imply that 𝑇𝑉𝐶(𝑇) is 

decreasing on (0, 𝑇1
∗] , increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
) , decreasing 

on [
𝑊

𝑃𝑅
, 𝑇3

∗] and increasing on [𝑇3
∗, ∞). Hence 𝑇𝑉𝐶(𝑇∗)= 

min [ 𝑇𝑉𝐶1( 𝑇1
∗) , 𝑇𝑉𝐶3(𝑇3

∗) ] and 𝑇∗  = 𝑇1
∗  or 𝑇3

∗ 

(associated with the least cost). 

(g) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0, 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗  ≥

𝑊

𝑃𝑅
, 𝑇2

∗  <
𝑊

𝑃𝑅
 and 𝑇3

∗ 

<
𝑀0

1−𝛼𝑃𝑅
 then Equations (17), (23) and (25) imply that 

𝑇𝑉𝐶(𝑇) is decreasing on (0, 
𝑊

𝑃𝑅
) and increasing on [

𝑊

𝑃𝑅
, ∞). 

Hence 𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶2(
𝑊

𝑃𝑅
) and 𝑇∗ = 

𝑊

𝑃𝑅
. 

(h) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗  ≥

𝑊

𝑃𝑅
, 𝑇2

∗  <
𝑊

𝑃𝑅
and 𝑇3

∗  ≥
𝑀0

1−𝛼𝑃𝑅
 then Equations (22), (23)and (17) imply that 

𝑇𝑉𝐶(𝑇)  is decreasing on (0, 
𝑊

𝑃𝑅
) , increasing on [

𝑊

𝑃𝑅
, 

𝑀0

1−𝛼𝑃𝑅
], decreasing on[

𝑀0

1−𝛼𝑃𝑅
, 𝑇3

∗] and increasing on [𝑇3
∗, 

∞) . Hence 𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶2(
𝑊

𝑃𝑅
), 𝑇𝑉𝐶3( 𝑇3

∗)] and 

𝑇∗ = 
𝑊

𝑃𝑅
 or 𝑇3

∗ (associated with the least cost). 

(i) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 and 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
  and 

𝑇3
∗ < 

𝑀0

1−𝛼𝑃𝑅
 then Equations (22), (17) and (25) imply that 

𝑇𝑉𝐶(𝑇) is decreasing on (0, 𝑇2
∗ ] and increasing on [𝑇2

∗, 

∞). Hence 𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶2(𝑇2
∗) and 𝑇∗ = 𝑇2

∗. 

(j) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 
𝑊

𝑃𝑅
 ≤ 𝑇2

∗≤ 
𝑀0

1−𝛼𝑃𝑅
 and 

𝑇3
∗  ≥  

𝑀0

1−𝛼𝑃𝑅
 then Equations (22)and (17) imply that 

𝑇𝑉𝐶(𝑇)  is decreasing on (0, 𝑇2
∗ ] , increasing on [𝑇2

∗ , 
𝑀0

1−𝛼𝑃𝑅
] , decreasing on [

𝑀0

1−𝛼𝑃𝑅
 , 𝑇3

∗] and increasing on [𝑇3
∗, 

∞) . Hence 𝑇𝑉𝐶(𝑇∗)= min [𝑇𝑉𝐶2(𝑇2
∗), 𝑇𝑉𝐶3(𝑇3

∗)] and 𝑇∗ 
= 𝑇2

∗ or 𝑇3
∗ (associated with the least cost). 

(k) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒  > 0 and 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 𝑇2

∗> 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗  < 
𝑀0

1−𝛼𝑃𝑅
 then Equations (22), (24)and (25) imply that 

𝑇𝑉𝐶(𝑇)  is decreasing on (0, 
𝑀0

1−𝛼𝑃𝑅
] and increasing on 

[
𝑀0

1−𝛼𝑃𝑅
 , ∞). Hence 𝑇𝑉𝐶(𝑇∗)=𝑇𝑉𝐶2(

𝑀0

1−𝛼𝑃𝑅
 )  and 𝑇∗  = 

𝑀0

1−𝛼𝑃𝑅
 . 
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(l) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 > 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  > 0 , 𝐻(2𝑃 − 1) −

2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 > 0 and 𝑇1
∗ ≥

𝑊

𝑃𝑅
, 𝑇2

∗> 
𝑀0

1−𝛼𝑃𝑅
 and 𝑇3

∗ ≥ 
𝑀0

1−𝛼𝑃𝑅
 then Equations (22), (24)and (17) imply that 

𝑇𝑉𝐶(𝑇) is decreasing on (0, 𝑇3
∗] and increasing on [𝑇3

∗, 

∞) . Hence 𝑇𝑉𝐶(𝑇∗)= 𝑇𝑉𝐶3(𝑇3
∗) and 𝑇∗ =  𝑇3

∗ . 

5. Decision Rule of the Optimal Cycle 

Time When 
𝑾 

𝑷𝑹
>  𝑴 =  𝑴𝟎  +

 𝜶𝑷𝑹𝑻. 

In this case Equations (10) and (14) yield 

𝑇1
∗ ≥

𝑊

𝑃𝑅
 implies 𝑇𝑉𝐶1

′(
𝑊

𝑃𝑅
) ≤ 0 and hence 𝑇𝑉𝐶1(𝑇) is 

decreasing on (0, 
𝑊

𝑃𝑅
)             (26) 

𝑇3
∗ <

𝑊

𝑃𝑅
  implies 𝑇𝑉𝐶3

′ (
𝑊

𝑃𝑅
) > 0 and hence 𝑇𝑉𝐶3(𝑇) is 

increasing on [
𝑊

𝑃𝑅
, ∞)             (27) 

Furthermore, the result follows. 

Theorem 3. 

(A) Suppose that 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −

 2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒< 0 then 𝑇∗ = ∞ and 𝑇𝑉𝐶(𝑇∗) = -∞ ie., 

the retailer will try to continue his cycle as much as 

possible.  

Proof: See Theorem 2-(A) 

(B) Suppose that 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −

 2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 = 0 then  

(i) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 = 0 then 𝑇∗ = ∞ and 

𝑇𝑉𝐶(𝑇∗) =−𝐶𝐼𝑝𝑃𝑅𝑀0. 

(ii) If 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 > 0 then 

(a) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 then 𝑇∗  = ∞ and 𝑇𝑉𝐶(𝑇∗) 

=−𝐶𝐼𝑝𝑃𝑅𝑀0.  

(b) If 𝑇1
∗ <

𝑊

𝑃𝑅
  then 𝑇∗  = 𝑇1

∗  or ∞ and 𝑇𝑉𝐶(𝑇∗) = 

min [𝑇𝑉𝐶1( 𝑇1
∗), −𝐶𝐼𝑝𝑃𝑅𝑀0]. 

Proof: (i) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 

= 0 and 𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  = 0 then Equation 

(10) and (14) imply that 𝑇𝑉𝐶(𝑇) is decreasing on (0, ∞). 

Again lim
𝑇→0+

𝑇𝑉𝐶(𝑇)=∞ and lim
𝑇→∞

𝑇𝑉𝐶(𝑇) = −𝐶𝐼𝑝𝑃𝑅𝑀0 . 

Consequently 𝑇∗ = ∞ and 𝑇𝑉𝐶(𝑇∗) =−𝐶𝐼𝑝𝑃𝑅𝑀0. 

(ii)(a) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒 = 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  = 0 and 𝑇1
∗ ≥

𝑊

𝑃𝑅
 then 

Equation (14) and (26) imply that 𝑇𝑉𝐶(𝑇) is decreasing 

on (0, ∞). Again lim
𝑇→0+

𝑇𝑉𝐶(𝑇)=∞ and lim
𝑇→∞

𝑇𝑉𝐶(𝑇) =

−𝐶𝐼𝑝𝑃𝑅𝑀0 . Consequently 𝑇∗  = ∞ and 𝑇𝑉𝐶(𝑇∗) 

=−𝐶𝐼𝑝𝑃𝑅𝑀0. 

(b) If 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒  = 0, 

𝐻(2𝑃 − 1) + 2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒  = 0 and 𝑇1
∗ <

𝑊

𝑃𝑅
 then 

Equation (14) and (17) imply that 𝑇𝑉𝐶(𝑇) is decreasing 

on (0, 𝑇1
∗] and increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
) and decreasing on 

[
𝑊

𝑃𝑅
 , ∞) . Consequently 𝑇∗ = 𝑇1

∗ or ∞ (linked with the 

smallest cost) and 𝑇𝑉𝐶(𝑇∗)  = min [ 𝑇𝑉𝐶1( 𝑇1
∗) , 

−𝐶𝐼𝑝𝑃𝑅𝑀0]. 

(C) Suppose that 𝐻(2𝑃 − 1) +  2𝐶𝐼𝑝𝑃 −

 2𝐶𝐼𝑝𝛼𝑃
2𝑅 − 𝑆𝐼𝑒  > 0 then clearly 𝐻(2𝑃 − 1) +

2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒 > 0 and  

(i) If 𝑇1
∗ <

𝑊

𝑃𝑅
 and 𝑇3

∗ ≥
𝑊

𝑃𝑅
then 𝑇∗  =𝑇1

∗  or𝑇3
∗  (linked 

with the smallest cost) and 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), 

𝑇𝑉𝐶3( 𝑇3
∗)].  

(ii) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 𝑇3

∗ ≥
𝑊

𝑃𝑅
 then 𝑇∗  = 𝑇3

∗  and 

𝑇𝑉𝐶(𝑇∗) =𝑇𝑉𝐶3( 𝑇3
∗).  

(iii) If 𝑇1
∗ <

𝑊

𝑃𝑅
 and 𝑇3

∗ <
𝑊

𝑃𝑅  
 then 𝑇∗  = 𝑇1

∗  and 

𝑇𝑉𝐶(𝑇∗) = 𝑇𝑉𝐶1( 𝑇1
∗). 

(iv) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 𝑇3

∗ <
𝑊

𝑃𝑅
 then 𝑇∗  = 

𝑊

𝑃𝑅  
 and 

𝑇𝑉𝐶(𝑇∗) = 𝑇𝑉𝐶3( 
𝑊

𝑃𝑅  
). 

Proof: 

(i) If 𝑇1
∗ <

𝑊

𝑃𝑅
 and 𝑇3

∗ ≥
𝑊

𝑃𝑅
 then Equation (17) implies 

that 𝑇𝑉𝐶(𝑇) is decreasing on (0, 𝑇1
∗ ] , increasing on [𝑇1

∗, 
𝑊

𝑃𝑅
) , decreasing on [ 

𝑊

𝑃𝑅
, 𝑇3

∗]and increasing on [𝑇3
∗, ∞). 

Consequently 𝑇∗  =𝑇1
∗  or 𝑇3

∗  (linked with the smallest 

cost) and 𝑇𝑉𝐶(𝑇∗) = min [𝑇𝑉𝐶1( 𝑇1
∗), 𝑇𝑉𝐶3( 𝑇3

∗)]. 

(ii) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 𝑇3

∗ ≥
𝑊

𝑃𝑅
 then Equations (26) and 

(17) imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0, 𝑇3
∗  ] and 

increasing on [ 𝑇3
∗ , ∞). So 𝑇∗  = 𝑇3

∗  and 𝑇𝑉𝐶(𝑇∗) 
=𝑇𝑉𝐶3( 𝑇3

∗). 

(iii) If 𝑇1
∗ <

𝑊

𝑃𝑅
  and 𝑇3

∗ <
𝑊

𝑃𝑅  
 then Equations (17) and 

(25) imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0, 𝑇1
∗ ] and 

increasing on [𝑇1
∗ , ∞) . So 𝑇∗  = 𝑇1

∗  and 𝑇𝑉𝐶(𝑇∗)  = 

𝑇𝑉𝐶1( 𝑇1
∗). 

(iv) If 𝑇1
∗ ≥

𝑊

𝑃𝑅
 and 𝑇3

∗ <
𝑊

𝑃𝑅
 then Equations (26) and 

(17) imply that 𝑇𝑉𝐶(𝑇)  is decreasing on (0, 
𝑊

𝑃𝑅  
) and 

increasing on [ 
𝑊

𝑃𝑅  
, ∞) . So 𝑇∗  = 

𝑊

𝑃𝑅  
 and 𝑇𝑉𝐶(𝑇∗) = 

𝑇𝑉𝐶3( 
𝑊

𝑃𝑅  
). 
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6. Algorithm 

Step 1. If 𝛼𝑃𝑅 ≥  1, go to step 5.  

Step 2. Find 𝑇∗ from Theorem 2. 

Step 3. If 
𝑊

𝑃𝑅  
 ≤  𝑀0  +  𝛼𝑃𝑅𝑇

∗, then 𝑇0
∗ = 𝑇∗.  

Step 4. Go to step 7. 

Step 5. Find 𝑇∗ from Theorem 1. 

Step 6. If 
𝑊

𝑃𝑅  
 ≤  𝑀0  +  𝛼𝑃𝑅𝑇

∗, then 𝑇0
∗ = 𝑇∗. 

Step 7. Find 𝑇∗ from Theorem 3. 

Step 8. If 
𝑊

𝑃𝑅  
 >  𝑀0  +  𝛼𝑃𝑅𝑇

∗, then 𝑇00
∗ = 𝑇∗.  

Step 9. If only 𝑇0
∗ exists and 𝑇00

∗  does not exist, then 𝑇0
∗ 

is the optimal cycle time. 

Step 10. If only 𝑇00
∗  exists and 𝑇0

∗ does not exist, then 

𝑇00
∗ is the optimal cycle time. 

Step 11. If both 𝑇0
∗  and 𝑇00

∗  exist, then calculate 

𝑇𝑉𝐶 (𝑇0
∗) and 𝑇𝑉𝐶 (𝑇00

∗ ).  

Step 12. If 𝑇𝑉𝐶 (𝑇0
∗)  ≥  𝑇𝑉𝐶(𝑇00

∗ ), then optimum cycle 

time is 𝑇00
∗ , otherwise 𝑇0

∗ is the optimal cycle time. 

7. Numerical Example 

Let us study inventory structure with the subsequent 

parameters in suitable units. 

(i) Let the probability density of demand 𝑥 kg of the 

item throughout period 𝑇 month be uniform in 𝑎(𝑇)  =
 10𝑇 ≤  𝑥 ≤  𝑏(𝑇)  =  60𝑇  i.e., 𝑓(𝑥|𝑇) =

{

1

𝑎(𝑇)−𝑏(𝑇)
, 𝑎(𝑇) ≤ 𝑥 ≤ 𝑏(𝑇)   

0,                  otherwise
. Therefore we get µ(𝑇)  =

 35𝑇, 𝑃 = 1.7 , 𝑅 =
 µ(𝑇)

𝑇
=  35. Other parameters are 

𝐴 =  $ 50 per cycle, 𝐻 =  $ 0.5 per kg per month, 𝐶 =
 $ 10 per kg, 𝑆 =  $ 12 per kg, 𝛼 = 0.5,  𝑀0 =  2 month, 

𝐼𝑒 =  $ 0.025 per $  per month, 𝐼𝑝  =  $ 0.05  per $ per 

month, 𝑊 =  30(here 𝑅 ≥  1 ). Using Theorem 1, we 

get 𝑇∗= ∞, 𝑇𝑉𝐶(𝑇∗)  =  −∞  and 
𝑊

𝑃𝑅  
 ≤  𝑀0  +  𝛼𝑃𝑅𝑇

∗ 

is satisfied. Again using Theorem 3, we get 𝑇∗ = ∞, 

𝑉𝐶(𝑇∗)  =  −∞  , and  
𝑊

𝑃𝑅  
 >  𝑀0  +  𝛼𝑃𝑅𝑇

∗ , is not 

satisfied. Hence optimal cycle time is infinity and optimal 

cost is minus infinity (i.e., the retailer will try to continue 

production cycle as much as possible). 

(ii) Let the probability density of demand 𝑥 kg of the 

item throughout period 𝑇 month be uniform in 𝑎(𝑇)  =
 0 ≤  𝑥 ≤  𝑏(𝑇)  =  20𝑇  i.e., 𝑓(𝑥|𝑇) =

{

1

𝑎(𝑇)−𝑏(𝑇)
, 𝑎(𝑇) ≤ 𝑥 ≤ 𝑏(𝑇)   

0,                  otherwise
. Therefore we get µ(𝑇)  =

 10𝑇, 𝑃 = 2 , 𝑅 =
 µ(𝑇)

𝑇
=  10. Other parameters are 𝐴 =

 $ 50 per cycle, 𝐻 =  $ 0.5 per kg per month, 𝐶 =  $ 10 

per kg, 𝑆 =  $ 12 per kg, 𝛼 = 0.5,  𝑀0 =  2 month, 𝐼𝑒 =
 $ 0.005 per $ per month, 𝐼𝑝  =  $ 0.05 per $ per month, 

𝑊 =  30(here 𝑅 ≥  1 ). Using Theorem 1, we get 𝑇∗= 

5.2705, 𝑇𝑉𝐶(𝑇∗)  =  17.77  and 
𝑊

𝑃𝑅  
 ≤  𝑀0  +  𝛼𝑃𝑅𝑇

∗  is 

satisfied. Again using Theorem 3, we get 𝑇∗ = ∞, 

𝑇𝑉𝐶(𝑇∗)  =  −∞  , and 
𝑊

𝑃𝑅  
 >  𝑀0  +  𝛼𝑃𝑅𝑇

∗ , is not 

satisfied. Hence optimal cycle time is 5.2705 month and 

optimal cost is $17.77. 

(iii) Let the probability density of demand 𝑥 kg of the 

item throughout period 𝑇 month be normal with 

parameters mean 9𝑇  and standard deviation 3𝑇  in 

𝑎(𝑇)  =  0 ≤  𝑥 ≤  𝑏(𝑇)  =  18𝑇  i.e., 𝑓(𝑥|𝑇) =

{
1

√2𝜋𝜎(𝑇)
𝑒
−
(𝑥−𝜇(𝑇))2

2𝜎(𝑇)2 , 𝑎(𝑇) ≤ 𝑥 ≤ 𝑏(𝑇)   

0,                                 otherwise

. Therefore we get 

µ(𝑇)  =  9𝑇, 𝑃 = 2 , 𝑅 =
 µ(𝑇)

𝑇
=  9. Other parameters are 

𝐴 =  $ 50 per cycle, 𝐻 =  $ 0.5 per kg per month, 𝐶 =
 $ 10 per kg, 𝑆 =  $ 12 per kg, 𝛼 = 0.5,  𝑀0 =  2 month, 

𝐼𝑒 =  $ 0.005 per $  per month, 𝐼𝑝  =  $ 0.05  per $ per 

month, 𝑊 =  30(here 𝑅 <  1 ). Using Theorem 2, we get 

𝑇∗ = 2.9695, 𝑇𝑉𝐶(𝑇∗)  =  28.6548  and 
𝑊

𝑃𝑅  
 ≤  𝑀0  +

 𝛼𝑃𝑅𝑇∗ is satisfied. Again using Theorem 3, we get 𝑇∗= 

2.8172, 𝐶(𝑇∗)  =  17.4965 , and  
𝑊

𝑃𝑅  
 >  𝑀0  +  𝛼𝑃𝑅𝑇

∗ , 

is not satisfied. Hence optimal cycle time is 2.9695 month 

and optimal cost is $28.6548. 

8. Sensitivity Analysis 

At this time, we study two instances and debate the 

sensitivity investigation of all the parameters in each case. 

(I) In the first problem, let the probability density 

demand 𝑥 kg of the item throughout period 𝑇 month be 

uniform in 𝑎(𝑇)  =  0 ≤  𝑥 ≤  𝑏(𝑇)  =  18𝑇  i.e., 

𝑓(𝑥|𝑇) = {

1

𝑎(𝑇)−𝑏(𝑇)
, 𝑎(𝑇) ≤ 𝑥 ≤ 𝑏(𝑇)   

0,                  otherwise
. Therefore we 

get µ(𝑇)  =  9𝑇, 𝑃 = 2 , 𝑅 =
 µ(𝑇)

𝑇
=  9. Other parameters 

are 𝐴 =  $ 50 per cycle, 𝐻 =  $ 0.6 per kg per month, 

𝐶 =  $ 10  per kg, 𝑆 =  $ 13  per kg, 𝛼 = 0.4,  𝑀0 =  2 

month, 𝐼𝑒 =  $ 0.004 per $ per month, 𝐼𝑝  =  $ 0.05 per 

$ per month, 𝑊 =  30. Solving the problem, we obtain, 

optimal cycle time is 3.1735 month and optimal cost is 

$30.5739. 

(II) whereas in the second problem,  the probability 

density of demand 𝑥 kg of the item throughout period 

𝑇 month be normal with parameters mean 10𝑇  and 

standard deviation 0.85𝑇  in 𝑎(𝑇)  =  7.5𝑇 ≤  𝑥 ≤
 𝑏(𝑇)  =  12.5𝑇  i.e., 𝑓(𝑥|𝑇) =
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{
1

√2𝜋𝜎(𝑇)
𝑒
−
(𝑥−𝜇(𝑇))2

2𝜎(𝑇)2 , 𝑎(𝑇) ≤ 𝑥 ≤ 𝑏(𝑇)   

0,                  otherwise

. Therefore we get 

µ(𝑇)  =  10𝑇, 𝑃 = 1.25 , 𝑅 =
 µ(𝑇)

𝑇
=  10. Other 

parameters are 𝐴 =  $ 50 per cycle, 𝐻 =  $ 1.5 per kg 

per month, 𝐶 =  $ 10  per kg, 𝑆 =  $ 13  per kg, 𝛼 =
0.05,  𝑀0 =  2  month, 𝐼𝑒 =  $ 0.025 per $  per month, 

𝐼𝑝  =  $ 0.05  per $ per month, 𝑊 =  35.  The optimal 

cycle time is 1.7747 month and optimal cost is $56.3471. 

Table 1.  Sensitivity analysis of different parameters 

Parameter Change 
Example (I) Example (II) 

Cycle time  Total Cost  Cycle time  Total Cost  

𝑨 

-20% 2.8385(-10.6%) 27.2474(-10.9%) 1.5873(-10.6%) 50.3984(-10.6%) 

-10% 3.0107(-05.1%)  28.9570(-05.3%) 1.6836(-05.1%) 53.4555(-0.51%) 

+10% 3.3284(+04.9%)  32.1119(+05.0%) 1.8613(+04.8%) 59.0973(+04.9% 

+20% 3.4765(+09.5% ) 33.5814(+09.8% ) 1.9441(+09.5% )  61.7251(+09.5% )  

𝑯 

-20% 3.8665(+20.0% )  24.9267(-18.5% )  1.9157(+07.9% )  52.2015(-07.4% ) 

-10% 3.4692(+09.3% )  27.8889(-08.8% )  1.8411(+03.7% )  54.3139(-03.6% ) 

+10% 2.9426(-07.3% )  33.0475(+08.1% )  1.7149(-03.4% )  58.3095(+03.5% ) 

+20% 2.7556(-13.2%)  35.3528(+15.6%)  1.6609(-06.4%) 60.2079(+06.9%) 

𝑹 

-20% 3.3293(+04.9% )  29.2866(-04.2% )  1.9841(+11.8% )  50.3984(-10.6% ) 

-10% 3.2372(+02.0% )  30.0484(-01.7% )  1.8707(+05.4% )  53.4555(-05.1% ) 

+10% 3.1341(-01.2% )  30.87770(+01.0% )  1.6927(-04.6% )  59.0973(+04.9% ) 

+20% 3.1163(-01.8% )  30.9659(+01.3% )  1.6200(-08.7% )  61.7251(+09.5% ) 

𝜶 

-20% 2.9779(-06.2% )  32.6447(+06.8% )  1.7747(+00.0% )  56.3471(+00.0% ) 

-10% 3.0710(-03.2%)  31.6258(+03.8%) 1.7747(+00.0% )  56.3471(+00.0% ) 

+10% 3.2871(+03.6% )  29.4858(-03.5% ) 1.7747(+00.0% )  56.3471(+00.0% ) 

+20% 3.4137(+07.6% )  28.3572(-07.3% ) 1.7747(+00.0% )  56.3471(+00.0% ) 

𝑷 

-20% 3.7914(+19.5%)  254394(-16.8% )  2.1442(+20.9% )  46.6368(-17.2% ) 

-10% 3.4415(08.4% )  28.1203(-08.0% )  1.9334(+08.9% )  51.7204(-08.2% ) 

+10% 2.9598(-06.7% )  32.8499(+07.4% )  1.6495(-07.1% )  60.6217(+07.6% ) 

+20% 2.7841(-12.3% )  34.9819(+14.4% )  1.5476(-12.8% )  64.6142(+14.7% ) 

𝑰𝒆 

-20% 2.9903(-05.8% )  32.6922(+06.9% )  1.7568(-01.8% )  56.9201(+01.0% ) 

-10% 3.0778(-03.8% )  31.6474(+03.5% )  1.7656(-00.5% )  56.6347(+00.5% ) 

+10% 3.2788(+03.3% )  29.4690(-03.6% )  1.7838(+00.5% )  56.0580(-00.5% ) 

+20% 3.3952(+06.9% )  28.3294(-07.3% )  1.7931(+01.0% )  55.7673(-01.0% ) 

𝑰𝒑 

-20% 3.1735(+00.0% )  30.5739(+00.0% ) 1.8490(+04.2% )  54.0833(-04.0% ) 

-10% 3.1735(+00.0% )  30.5739(+00.0% ) 1.8107(+02.0% )  55.2268(-02.0% ) 

+10% 3.1735(+00.0% )  30.5739(+00.0% ) 1.7407(-01.9%)  57.4456(+01.9%) 

+20% 3.1735(+00.0% )  30.5739(+00.0% ) 1.7087(-03.7% )  58.5234(+03.9% ) 

𝑪 

-20% 3.1735(+00.0%)  30.5739(00.0%) 1.8490(+04.2%)  54.0832(-04.0%) 

-10% 3.1735(+00.0%)  30.5739(00.0%) 1.8107(+02.0%)  55.2268(-2.0%) 

+10% 3.1735(+00.0%)  30.5739(00.0%) 1.7407(-01.9% )  57.4456(+01.9% ) 

+20% 3.1735(+00.0%)  30.5739(00.0%) 1.7087(-03.7% )  58.5235(+03.9%) 

𝑺 

-20% 2.9903(-05.8% )  32.6922(+06.9% )  1.7568(-01.8% )  56.9209(+01.0%) 

-10% 3.0078(-03.0% )  31.6474(+03.5% )  1.7656(-00.5% )  56.6347(+00.5% ) 

+10% 3.2788(+03.3% )  29.4690(-03.6% )  1.7838(+00.5% )  56.0585(-00.5% ) 

+20% 3.3952(+06.9%)  28.3294(-07.3%)  1.7931(+01.0%)  55.7673(-01.0%) 
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Table 1 continued 

𝑾 

-100% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

-50% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

-20% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

-10% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+10% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+20% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+50% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+100% 1.7218(-45%) 58.079250(89.9%) 1.7747(00.0%) 56.3471(00.0%) 

𝑴𝟎 

-75% 3.1735(+00.0%)  30.5739(00.0%) 2.0439(+15.2%) 45.8009(-18.7%) 

-50% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

-20% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

-10% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+10% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+20% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+50% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

+75% 3.1735(+00.0%)  30.5739(00.0%) 1.7747(00.0%) 56.3471(00.0%) 

 

The Table-1 represents the sensitivity of decision 

variable ’cycle time’ and total cost to changes in each of the 

11 parameters in both the problems. Here we observe that 

cycle time and total cost are moderately sensitive to 

changes in the parameters 𝐴,𝐻, 𝑅, 𝑃,  𝐼𝑒 and, that is, even a 

small change in the values of those parameters make 

significant change in the decision parameters and total cost. 

Here we also note that in problem (I) change in 𝐶 or 𝐼𝑝 

does not change the values of cycle time and total cost 

whereas in problem (II) cycle time and total cost undergo 

significant changes with the changes in the values of 𝐶 or 

𝐼𝑝 . Again, in problem (II) a change in 𝛼 does not change 

the values of cycle time and total cost whereas in problem 

(I) cycle time and total cost undergo significant changes 

when 𝛼 is changed. From the sensitivity of problem (I) 

and problem (II), we can conclude that the sensitivity of the 

parameters 𝐶 , 𝐼𝑝  and 𝛼  are entirely dependent of 

parameter values of distinct problems. In general, we can 

conclude about the sensitivity of these parameters. 

However, cycle time and total cost are not sensitive at all to 

changes in 𝑊  and 𝑀0 . But if we make outstanding 

variations in their values the result may experience 

noticeable changes. Finally, the eff ects of anew defined 

parameters can be profoundly detected from the overhead 

table. It is noted that as 𝛼 increases, the total cost rises 

whereas cycle time (not strictly) in case of same result will 

hold in strict sense. This indicates just how variable trade 

credit is significant in optimal consequence. 

9. Special Case 

When 𝑃 = 1  and 𝛼 =  0( 𝐻 =  ℎ, 𝑆 =  𝑠, 𝐶 =  𝑐 ). 

Let 𝑀 =  𝑀0, 𝐷 =  𝑅 and  

𝑇𝑉𝐶4(𝑇)  =
𝐷𝑇ℎ

2
+  𝑐𝐼𝑝𝐷𝑇 −

𝐷𝑇𝑠𝐼𝑒

2
        (28) 

𝑇𝑉𝐶5(𝑇)  =
𝐷𝑇ℎ

2
 − 𝐷𝑠𝐼𝑒[𝑀 −

𝑇

2
 ]         (29) 

𝑇𝑉𝐶6(𝑇)  =
𝐷𝑇ℎ

2
 +  𝑐𝐼𝑝𝐷(𝑇 − 𝑀) −

𝐷𝑇𝑠𝐼𝑒

2
     (30) 

𝑇4
∗ = 𝑇6

∗ = √
2𝐴

𝐷(ℎ + 2𝑐𝐼𝑝 −𝑠𝐼𝑒)
             (31) 

𝑇5
∗ = √

2𝐴

𝐷(ℎ + 𝑠𝐼𝑒)
                  (32) 

Then Equations (28), (29), (30), (31), and (32) will be 

consistent with Equations (2), (3), (4), (12) and (13) in 

Chung et al.’s model [6] respectively. Again 𝐻(2𝑃 −
1) +  2𝐶𝐼𝑝𝑃 −  2𝐶𝐼𝑝𝛼𝑃

2𝑅 − 𝑆𝐼𝑒 = 𝐻(2𝑃 − 1) +
2𝐶𝐼𝑝𝑃 − 𝑆𝐼𝑒,𝐻(2𝑃 − 1) − 2𝑆𝐼𝑒𝛼𝑃𝑅 + 𝑆𝐼𝑒 = h + s𝐼𝑒 > 0 

and 𝛼𝑃𝑅  = 0 < 1. So Theorem 1, Theorem 

2(𝐵(𝑖), 𝐵(𝑖𝑖𝑖), 𝐵(𝑖𝑣), 𝐶(𝑖))  and Theorem 

3 (𝐵(𝑖𝑖), 𝐶(𝑖), 𝐶(𝑖𝑣)) will not be required. However, other 

theorems will be consistent with Chung et al.’s [6] model. 

Thus Chung et al.’s [6] model is a special case of this 

model. 

10. Conclusions 

This paper deals with a probabilistic economic order 

quantity inventory model under condition of permissible 

delay in payments to take the order quantity into account. 

To reflect realistic commercial circumstances, it is 

supposed that the trade credit period is not only allied to the 

order quantity but also varies with the ordering quantity. If 

 <  𝑊 , the delay in payments is not allowed. Else, a 

flexible trade credit period 𝑀 =  𝑀 0 +  𝛼 𝑄 is permitted. 

It is also supposed that demand rate follows a probability 

density function. Under these conventions, the model is 
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settled. It is shown that, if  ≥
 𝑊

𝑃𝑅
, one can swiftly determine 

the optimal ordering quantity by using Theorem 3. 

Otherwise, if <
 𝑊

𝑃𝑅
  , then the optimal ordering strategy 

can be found from Theorem 1 and Theorem 2. We develop 

an algorithm, which will support one to determine the 

optimal 𝑇∗efficiently. Numerical examples are provided 

for illustration. To check the fluctuations in the decision 

variables for changes in diff erent parameters, a sensitivity 

scrutiny is also carried out. Lastly, we have shown that 

Chung et al.’s model [6] is a special case of our model. 
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