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A B S T R A C T   

We report combined first-principle and tight-binding (TB) calculation to investigate the mechanical and elec
tronic properties of non-hexagonal two-dimensional (2D) tetragonal-silicene (TS) sheet and nanoribbons (NRs). 
The results obtained by the TB method are consistent with the density functional theory (DFT) results. The elastic 

constants of the TS sheet are comparable to silicene. The existence of two Dirac cones is observed at different k
→

points in the irreducible Brillouin Zone. A spin-orbit bandgap larger than silicene is observed in TS. The criteria 
for the stability and robustness of the Dirac Cones on the TB parameters are extensively investigated. Both the 
Dirac points are robust and stable under a wide range of hopping parameters. The degeneracy of the Dirac cones 
can be removed by introducing asymmetry in the on-site energy. Comparing the DFT and TB band structures, the 
values of the TB hopping parameters are estimated. The electronic properties of the TSNRs show a strong 
dependence on the width and the edge states. The symmetric armchair TSNRs show a width dependent multiple 
Dirac cones in the Brillouin zone. The number of Dirac cones of the NR is found to be dependent on the TB 
hopping parameters as well. On the other hand, asymmetric armchair TSNRs are semiconducting. The tuning of 
the bandgap for asymmetric armchair TSNRs by modulating the TB hopping parameters is also explored. Zigzag 
TSNR behaves as a degenerate semiconductor with the presence of Dirac cones just below and above EF . We 
subsequently expect that these theoretical findings will give a better comprehension of Dirac materials and their 
NRs with its potential application in nano-electronics.   

1. Introduction 

The discovery of graphene [1] has attracted enormous research in
terests, both theoretically and experimentally, due to its conceivable 
application in electronics, photonics, opto-electronics, thermoelectric 
application, etc. [2–5]. This lies in the graphene’s inherent extraordi
nary properties regarding robustness, flexibility, stability, electrical, 
thermal conductivity, half-integer quantum hall effect etc. [1,6,–9]. One 
of the potential grips for explaining these amazing properties of gra
phene is its special band structure (BS) with highlighting Dirac points 
and cones. Descending through the other group-IV elements, the 2D 
structure of silicon (silicene), germanium (germanene), tin (Stanene), 
and their electronic properties have also got immense consideration 
[10–14]. The low-buckled honeycomb lattice silicene and germanene, 
an analog of graphene with two atoms per unit cell are the two reported 

structures [10,11] having linear dispersion relation near Fermi energy. 
Silicene is unstable in planar structure, but alternate atom slightly 

buckled in z-direction gives a stable structure. Again, free-standing sil
icene is unstable in the air and hence a substrate is needed for epitaxial 
growth of silicene due to its tendency toward sp3 hybridization. Hence, 
in experiments silicene is synthesized in substrates like Ag(111), Ir(111), 
etc. [15,16], but this destroys the Dirac Fermion characteristics of sili
cene and reduces the carrier mobility. Still, silicene remains one of the 
emerging 2D materials with a similar Dirac physics like graphene, but 
with a larger spin-orbit coupling inducing a bandgap of 1.55 meV at the 
K point [17]. Contrary to graphene, silicene also has an intrinsic 
spin-orbit coupling, which plays a significant role in spin transport [18]. 
Therefore, silicene has the opportune both in principle and analyses 
because of its potential applications in the current Si-based industry. 

The electronic, optical and other properties of the 2D materials 
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including graphene and silicene can be tuned, for implementation in 
nanodevices, by tailoring the 2D materials into nanoribbons (NRs), 
nanodots with edges, and/or by chemical functionalization. For 
example, graphene NRs (GNRs) are either metal or semiconductor 
depending on ribbons width and edge orientation [19–21]. The elec
tronic and optical properties of silicene NRs (SiNRs) also exhibit 
important electronic properties based on the edge geometry and width. 
For example, the bandgap of armchair SiNRs (ASiNRs) oscillates with a 
period of three with the increase of NR width [22–24]. Again similar to 
zigzag GNRs, the bandgap of zigzag SiNRs (ZSiNR) decreases mono
tonically with the increase of width [23]. A symmetry dependent 
transport property is also observed for ZSiNRs [25]. In Ref. [26], the 
authors also reported the magnetic properties of planar silicene by 
introducing a defect/doping. SiNRs are found to be promising materials 
for future nanodevices such as FET and gas sensor [27]. 

Nevertheless, these methodologies have not been sufficiently 
improved concerning their proficiency in a realistic application in 
nanoscience and nanotechnology. Thus, an inquiry of new allotropes of 
graphene, silicene is of intrigue. Initially, it was suggested that hexag
onal symmetry is one of the essential conditions for the emergence of 
Dirac cones. But, there are some 2D graphene allotropes which possess 
Dirac cones without hexagonal symmetry [28–31]. Non-hexagonal al
lotropes like 6,6,12-graphyne and S-graphene (SG) possess two Dirac 
cones in their irreducible Brillouin zone (IBZ) and are more versatile 
than the hexagonal graphene. The robustness and the stability of the two 
Dirac cones of SG and 6,6,12 graphyne are explored by using a 
tight-binding (TB) model [32,33]. In a recent analytical study [34], the 
authors have demonstrated the emergence of Dirac Fermions owing to 
different symmetries of the system. The electronic and optical properties 
of non-hexagonal T-Graphene (TG) and SG nanoribbons are studied. It 
has been established that a mirror symmetry dependent multiple Dirac 
points emerge for armchair TGNRs [35]. In Refs. [36], authors have 
shown theoretically that doped TG quantum dots find its potential 
application in carbon monoxide gas sensor. Recently, Nath et al., by first 
principle calculation has shown that the bandgap of SGNRs are strongly 
dependent on the width and edge states of the NRs [37]. 

However, the inquiry and expectation of 2D allotropes of silicon are 
much constrained in contrast to 2D carbon allotropes because of com
plexities in the synthesis of Si-based 2D materials. Very few stable free- 
standing silicene allotropes were predicted such as MoS2-type silicene 
[38], few honeycomb dumbbell silicene [39–41], tetragonal-silicene 
(TS) [42,43] similar to TG, tetra-silicene [44], 4-layered siliconeet 
[45] and monolayer silicon allotropes deposited on c-BN(111) [46]. 
Among the predicted silicene allotrope TS, siliconeet, and monolayer 
silicon allotropes deposited on c-BN(111) have Dirac cones. The TS 
structure predicted by Wu et al. [42], has a non-hexagonal symmetry 
and has two distinct Dirac points in the IBZ at the Fermi level. Owing to 
its buckling, TS has proximity towards sp3 hybridization similar to sili
cene. Moreover, a bandgap opening is observed in TS on hydrogenation 
which can be modulated by biaxial strain, showing flexibility on elec
tronic band structures [42,47]. The presence of two Dirac cones in IBZ, 
non-hexagonal symmetry, sp3 hybridization makes TS an intriguing 2D 
material and henceforth requires extensive investigation. 

Persuaded by these theoretical findings, we analyze the mechanical 
and electronic properties of the TS sheet and TS-nanoribbons (TSNR). In 
this work, we employ both the density functional theory (DFT) and the 
TB model to extract the electronic properties and behavior of the TS 
sheet as well as TSNRs. The paper is organized as follows. In section. 2, 
we present the DFT computational details employed in our work. In the 
‘Results and Discussions’ section, we first discuss the structure of TS and 
compare it with the previous works. We have also analyzed the me
chanical stability and elastic properties of the TS sheet. In the next part, 
we calculate the BS of TS sheet and employ the simple TB model to 
validate the existence of Dirac cones and investigate the stability and 
robustness in terms of TB parameters. Finally, we calculate the BS of the 

TSNRs of different edge and width using DFT and investigate the 
dependence of BS on TB parameters. 

2. Methodology 

The first-principle calculation is a reliable way to predict material 
properties, nonetheless, a simple tight-binding (TB) calculation also 
captures essential features. In this paper, both the TB and DFT of first- 
principle approaches have been employed. While DFT calculation is a 
computationally expensive process restricting calculation on smaller 
systems, TB calculation is inexpensive where a larger system can be dealt 
with it. The DFT calculations are carried out using the QUANTUM 
ESPRESSO (QE) package [48,49], based on an iterative solution of the 
Kohn-Sham equations of the DFT in a plane-wave basis set. We choose 
the technique with generalized gradient approximation (GGA) of 
Perdew-Burke-Ernzerhof (PBE) [50] exchange-correlation using Pro
jected Augmented Wave (PAW) [51,52]. Throughout the calculation, we 
set the kinetic energy cutoff for charge density at 360 Ry. For calculation 
of the ground state properties, the Brillouin zone (BZ) is sampled using a 
uniform 16 × 16 × 1 and 16 × 1 × 1 automatic Monkhorst-Pack (MP) 
[53] special k grid points for the sheet and nanoribbons respectively. A 
denser 24 × 24 × 1 and 24 × 1 × 1 Brillouin zone sampling is used for 
performing density of states (DOS) and projected density of states 
(PDOS) calculation along with the Gaussian broadening of 0.01 Ry for 
the sheet and NRs respectively. A vacuum region of more than 15 Å is 
kept between the TS layers to avoid interaction between neighboring 
layers. The geometry of the sheet is optimized until the maximum 
Hellmann-Feynman forces in each atom are less than 0.001 eV/Å. The 
convergence for kinetic energy cutoff, k-grid points, were checked by 
calculating the total energy and formation energy of the TS sheet. 

3. Results and Discussions 

3.1. Structure 

The atomic structure of TS is shown in Fig. 1a, which is similar to TG. 
The optimized unit cell, comprising of 8 atoms, exhibits a square sym
metry with the lattice constant of a = 7.6074 Å. Two types of Si-Si bond 
length are l1 = 2.252 Å and l2 = 2.304 Å, where l2 forms the four- 
membered silicon ring and l1 connects those ring (Fig. 1b). The struc
ture has a buckling of ΔZ ∼ 0.496 Å, which is similar to that of silicene 
(0.44 Å) [10]. The optimized parameters of TS are in accordance with 
reported in Refs. [42,47]. We have used periodic boundary condition 
with lattice translation vectors as Rx

̅→
= ax̂ and Ry

̅→
= aŷ along X- and 

Y-direction respectively. As already reported in Ref. [42], TS structure is 

Fig. 1. (a) Optimized structure of TS with top and side views. The unit cell is 
marked with a box. (b) The unit cell with the hopping strenghts. (c) Buckling 
angle θ1 and θ2 w.r.t. xy-plane, only a portion of the unit cell with 3pz orbitals 
are shown. 
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stable at the ground state with no negative phonon modes. Also, the 
molecular dynamics study revealed that the atomic structure remains 
the same up to a temperature of 1000K. We have calculated the for
mation energy per atom of the TS sheet using ΔETS = (nESi − ETS)/ n, 
where ΔETSis the formation energy, ESi is the total energy of an isolated 
single Si atom, ETS is the total energy of a unit cell of TS and n(=8) is the 
number of TS atom per unit cell. The calculated value is 4.5837 eV/a
tom, slightly lower than the silicene (4.77 eV/atom), also confirming the 
stability of the structure. 

3.2. Mechanical properties 

In this section, we evaluate the mechanical properties and elastic 
constant of the T-Silicene sheet by calculating the change in energy due 
to in-plane strain. In standard Voigt notation, the strain energy per unit 
area of the two-dimensional structure can be expressed as [54]. 

u(ε)= 1
2
C11ε2

x +
1
2
C22ε2

y + C12εxεy + 2C66ε2
xy (1)  

where C11, C22, C12, and C66 are components of the elastic modulus 
tensor, corresponding to the second partial derivative of strain energy 

with respect to strain. εx and εy are uniaxial in-plane strain along x and y 
directions respectively and εxy is the shearing strain. An absence of 
shearing strain leads to absence of the last term in equation (1). Since the 
TS structure is square symmetric, the value of C11 and C22 are equal, and 
we choose x direction for uniaxial strain. The elastic constants are 
evaluated by fitting the energy curves associated with uniaxial and equi- 
biaxial strains as shown in Fig. 2a. The obtained value of the elastic 
constants are C11 = C22 = 70.295 GPa-nm and C12 = 19.977 GPa-nm. 
The condition for the mechanical stability C11C22 − C2

12 > 0 is satisfied. 
The in-plane stiffness, an alternative of Young modulus for 2D 

structures, along x or y direction is derived from the elastic constants by 
Ea = Eb = (C2

11 − C2
12)/C11 = 64.618 GPa-nm. The calculated Poisson 

ratio for the TS sheet is νxy = νyx = C12/C11 = 0.284. These values are 
nearly equal to the values of silicene as reported in Ref. [55]. The 
alternative of the bulk modulus for 2D materials is the area modulus [57, 
37], defined as B =

F/A
δA/A where F/A is the stress and δA/A is the fractional 

change in the area (strain). The stress is calculated from the stress tensor 
obtained using QE. The structure is allowed to relax first, and then 
keeping the atomic position fixed, we have varied the area by elongating 
along x only (uniaxial) and both x and y direction (equi-biaxial) equally. 
The stress tensor is calculated using the self-consistent calculation for 
these uniaxial and biaxial strains. We have also plotted the stress-strain 
curve for the uniaxial and equi-biaxial conditions in Fig. 2b. Similar to 
other 2D materials, the TS sheet shows a non-linearity in its stress-strain 
curve. The area modulus from the linearly fitted stress-strain curves at 
small strain is B ∼42 GPa. A comparative study of the elastic modulus 
(Table 1) suggests that TS is softer material compared to carbon-based 
2D materials, while it is comparable to silicene. This lies in the fact 
that TS has a larger bond length with low buckling compared to 
carbon-based 2D materials. 

Fig. 2. (a) The strain energy/area of TS under uniaxial and equi-biaxial strain. 
(b) 2-D stress-strain curve. 

Table 1 
Comparison of the in-plane stiffness Ea, Eb Poisson ratio ν and area modulus B of 
T-Silicene with silicene, Graphene, T-graphene, S-graphene and Penta-graphene. 
a and b denote the lattice vector direction of the unit cell of each 2D structure.  

Structure Ea (GPa- 
nm)  

Eb (GPa- 
nm)  

va(vb) B (GPa- 
nm)  

T-Silicene [This 
work] 

64.62 64.62 0.28 42.00 

Silicene [55] 61.70 59.00 0.29 (0.33) - 
Graphene [56] 370.00 370.00 0.15 197.00 
T-Graphene [56] 298.00 298.00 0.24 193.00 
S-Graphene [37] 320.25 218.86 0.282 

(0.193) 
- 

Penta-Graphene 
[54] 

263.80 263.80 -0.068 -  

Fig. 3. (a)The electronic BS of TS and PDOS. The Fermi label is set to zero for 
convenience.(b) The DOS and PDOS of TS sheet. The path for the calculation of 
band structure in the BZ is shown in the inset. The dots represent the position of 
the Dirac points in the BZ. 
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3.3. Electronic properties of TS sheet 

3.3.1. DFT results 
In this subsection, we will investigate the electronic BS and density of 

states (DOS) of TS. The BS is calculated along the super-symmetry path 
Γ(0, 0,0)→X(0.5, 0, 0)→M(0.5,0.5, 0)→Γ(0,0, 0) as shown in inset of 
Fig. 3b. The BS (Fig. 3a) shows that TS has two points in the IBZ where 
VB and CB meet in a single point at the Fermi level EF (total eight points 
in the BZ). Thus, in the ground state, the TS behaves as a gapless insu
lator (semimetal) with two Dirac points. Around both the Dirac points, 
the conduction, and valance bands show linear dispersion, the point A 

with slope 2.94 eVÅ along X to Γ at k
→

= 2π
a (0.347,0) and point B with 

slope 3.8 eVÅ along M to Γ at k
→

= 2π
a (0.441,0.441). The Fermi velocity 

of TS is estimated by using, 

vF =
1
ℏ

dE
dk | k

→→ K→
(2)  

where K→ is the location of the Dirac point. Using this equation, we 
obtain the Fermi velocity to be vF ≈0.45 × 106 m/s for point ‘A’ and vF ≈

0.58 × 106 m/s for point ‘B’. This large value of vF suggests the charge 
carriers for TS to be massless Dirac Fermions. Moreover, Dirac point ‘B’ 
lies slightly below EF suggesting that TS is self-doped with electrons as 
charge carrier while Dirac point ‘A’ is intrinsic. Because the two points 
have different shapes and doping they will contribute differently to the 
electronic properties. 

We have computed the projected density of states (PDOS) and DOS 
and is shown in Fig. 3b. The PDOS suggests that the contribution of the 
3pz- orbitals is a maximum near EF region. Consistently PDOS and DOS is 
zero at EF. 

Spin-orbit coupling (SOC) plays an important role in the electronic 
properties of Silicene [58]. Thus it can be expected that SOC will also 
play a crucial role in the electronic properties of the low-buckled TS. 
Hence, we have calculated the band structure of the TS sheet incorpo
rating SOC using DFT and is shown in Fig. 4. We observe a spin-orbit 
bandgap of ∼ 11.8 meV for the Dirac point ‘A’, while a gap of ∼ 1.9 
meV for the point ‘B’. The spin-orbit gap at point ‘A’ and ‘B’ is nearly 7.5 

times and 1.3 times, respectively, to that of the spin-orbit gap in Silicene 
(Eg ∼ 1.55 meV) [17]. Moreover, the Dirac point ‘A’ lies slightly above 
the Fermi level indicating a self-doped character with the hole as carriers 
with the inclusion of SOC, which is otherwise intrinsic. On the other 
hand, the Dirac point ‘B’ becomes intrinsic with the SOC. This bandgap 
opening due to SOC and the alteration of the self-doping character of the 
Dirac cones of TS is of interest and, hence, requires intensive analysis. 
Since in this paper, we are not interested in the role of SOC in the 
electronic properties of the sheet or nanoribbons and hence are not 
carried out further. We emphasized only the band tuning by varying the 
TB parameters and structural modification (nanoribbons). 

3.3.2. Tight-binding model 
To validate the existence of Dirac points in the band structure and 

investigate the robustness and stability of the Dirac cones in the IBZ, we 
now avail of the nearest-neighbor (NN) tight-binding (TB) model 
considering the 3pz-orbital only, as these orbitals contribute near the 
Fermi level along with the formation of the Dirac cones. 

A simple 3pz-electronic NN-TB model of TS requires two different NN 
hopping energy: t1 and t2 along the bond l1 and l2 respectively. Using the 
notation as in Fig. 1b, NN-TB Hamiltonian can be written as: 

Hnn
π = ε

∑

i
c†i ci + t1(a†f + b†g + c†h + d†e + h.c.) + t2(a†b + a†d + f †g + e†f

+ g†h + b†c + e†h + c†d + h.c.)
(3)  

with ε as on-site energies of the atoms labelled i ∈ {a,b, c,d,e, f ,g,h}. 
To take care of the complicated buckling geometry the 3pz orbitals 

can be decomposed into two components that are normal and parallel to 
the bond as in equation (4) and demonstrated in Fig. 5 
⃒
⃒pzi〉 = cos θij

⃒
⃒pn

zi〉 + sin θij
⃒
⃒pl

zi〉
⃒
⃒
⃒pzj〉 = cos θij

⃒
⃒
⃒pn

zj〉 + sin θij

⃒
⃒
⃒pl

zj〉
(4) 

So, the hopping energy matrix element between the two neighboring 
atoms (i, j) is then given by  

where Vij
ppπ = 〈pn

zi

⃒
⃒c†i cj

⃒
⃒pn

zj〉, Vij
ppσ = 〈pl

zi

⃒
⃒c†i cj

⃒
⃒pl

zj〉are the two non-zero ma
trix elements. 

Thus in our TB model the two different NN hopping energies t1 and t2 

Fig. 4. Band diagram of TS sheet with and without spin-orbit Coupling. The 
insets show the zoom-in around the Dirac point A (top) and point B (bottom) 
with SOC. 

Fig. 5. Two neighboring pz orbitals bonding making an angle θij w.r.t. xy-plane 
and decomposition of the orbitals into normal and parallel components w.r.t 

bond direction l
→

. Pictorial representation of the non-vanishing components of 
hopping parameters are shown in the inset. 

tij = 〈pzi
⃒
⃒c†i cj

⃒
⃒pzj〉 = 〈pn

zi

⃒
⃒c†i cj

⃒
⃒pn

zj〉cos2 θij + 〈pl
zi

⃒
⃒c†i cj

⃒
⃒pl

zj〉sin2 θij = Vij
ppπcos2 θij + Vij

ppσsin2 θij (5)   
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can be represented using 〈ij〉 = 1 and 2 for bond l1 and l2 respectively, as 

t1 = V1
ppπcos2θ1 + V1

ppσsin2θ1

t2 = V2
ppπcos2θ2 + V2

ppσsin2θ2
(6)  

where V’s are the magnitudes of hopping parameters between NN 
3pzorbitals, θ1 and θ2are the buckling angles w.r.t. the xy-plane (Fig. 1c). 
From the stable structure data we have sin θ1 = 0.2202 and sin θ2 =

0.2153. 
The Hamiltonian matrix is constructed in Bloch representation as 

Hk
ij =

∑

R→
ei k
→⋅ R→Hij(R); Hij(R) = 〈ϕ o→,i|H|ϕ

R→,j
〉 (7)  

where Hk
ij’s are elements of 8 × 8 matrix, 

⃒
⃒
⃒ϕ

R→,j
〉is the basis orbital of type 

j in cell R→, with R→= ax̂ + aŷ is lattice translational vector. The 
Hamiltonian matrix can be straight forwardly written using eqns. (3) 
and (7) as 

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε t2α 0 t2β 0 t1 0 0
t2α* ε t2β 0 0 0 t1 0

0 t2β* ε t2α* 0 0 0 t1
t2β* 0 t2α ε t1 0 0 0

0 0 0 t1 ε t2 0 t2
t1 0 0 0 t2 ε t2 0
0 t1 0 0 0 t2 ε t2
0 0 t1 0 t2 0 t2 ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)  

here α = e− ikxa and β = e− ikya with the wavevector k
→

= kx x̂ + ky ŷ. The 
diagonalization of this matrix readily gives the TB solution for energy 
dispersion relation. 

3.3.2.1. Unification with DFT results. To check the consistency of our 
assumption for the NN-TB model we simulate the TB results and 
compare with DFT results for lowest energy bands near EF. We have 
calculated the BS of TS corresponding to the Hamiltonian in equation (3) 
and is depicted in Fig. 6. For a better comparison of the band structure, 
we have shown the BS from both TB and DFT method in the same figure. 
For TB results we concentrate only on the two energy bands viz. upper 
VB (UVB) and lower CB (LCB) near the Fermi level. The system exhibits 
two Dirac cones similar to those obtained by DFT results. Though only pz 
orbitals and simple NN-TB model cannot account the whole picture, 

taking the best fit of the BS using the NN-TB method with that obtained 
from the DFT near the Fermi level, we have calculated the optimized 
values of t1 = 0.85 eV and t2 = 0.9 eV. Further, we set the on-site en
ergies of the TB model equal to zero ε = 0.0. Now, from the stable 
structure configuration, we have obtained θ1 = sin− 1(0.2202) and θ2 =

sin− 1(0.2153) and using t1 = 0.85 eV and t2 = 0.9 eV in equation (6), we 
have calculated the four hopping paramters V1

ppσ , V2
ppσ , V1

ppπ, V2
ppπ which is 

tabulated in Table 2. Two different sets of V correspond to two types of 
bonds in the TS structure. With these sets of values, the energy disper
sion relation near EF matches well with the DFT results particularly the 
position of Dirac points ( K→= 2π

a (0.338,0), 2π
a (0.411,0.411) for A, B 

point respectively) and the slope (3.0, 3.56 eVÅ for A, B point respec
tively towards Γ) of these points at Fermi energy. Even though different 
groups of t1 and t2 having same t1/t2 ∼ 0.944 conserves the K→-positions 
of the Dirac points, the slope of bands near the Fermi level deviates from 
the DFT results. We have shown the results of two such groups in the 
Electronic Supplementary Item (ESI) Fig. 1. The symmetry of the TB 

Fig. 6. Band structure of TS sheet corresponding to the TB Hamiltonian with 
NN hopping only. We set t1 = 0.85eV, t2 = 0.9 eV and ε = 0.0 eV to simulate 
the DFT result at Fermi level. The coloured line represents the TB results and 
black dotted lines the DFT results. 

Fig. 7. (a) BS for t1/t2 = 1.5. The two Dirac points are shifted towards super- 
symmetric point Γ. (b) Merging of two Dirac points to a single flat region at Γ 
for t1/t2 = 2.0. Existence of a single Dirac point at the center of the Brillouin 
zone. (c) Bandgap opening for t1/t2 > 2.0. (d) Shifting of Dirac points A, B 
towards super-symmetric point X, M respectively for arbitrary t1/t2 = 0.3. (e) A 
bandgap opening for asymmetry in the on-site energy ε = ±0.1 eV and vice 
versa for alternate atoms with hopping parameter t1/t2 = 0.85/0.9. (f) De
generacy of the point ‘B’ is removed with the asymmetry in the on-site energy, 
here we set ε = ±0.3 eV and vice versa for the alternate tetra-rings of Si-atoms. 
In the figure, solid blue (red) lines represents the UVB (LCB) for the afore
mentioned values of hopping energy and on-site energy, broken black lines are 
for t1/t2 = 0.85/0.9 = 0.944and ε = 0.0 as considered in Fig. 6 as a reference. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 2 
Tight binding hopping parameters of TS.  

Parameters V1
ppσ  V2

ppσ  V1
ppπ  V2

ppπ  

Values in eV 4.47 4.42 − 1.12 − 1.16  
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band spectra around the Fermi level is due to electron-hole symmetry. 
The values of Vppσ and Vppπ matches well with that of silicene [58]. 

3.3.2.2. Robustness of the Dirac points. Now we investigate the robust
ness and stability of the individual Dirac cones of TS by tuning the 
hopping energy and on-site energy from their value obtained by fitting 
DFT parameters. We consider the cases when (i) t1/t2 > 1.0, (ii) t1/ t2 <

1.0 and (iii) asymmetry in the on-site energy.  

(i) With the increase in t1/t2 above unity, the BS remains gapless 
with the existence of both the Dirac points. However, both the 
Dirac point, ‘A’ and ‘B’ move in the direction towards Γ super- 

symmetric point to new k
→

position at the same Fermi level. A 
typical band structure for arbitrary value of t1/ t2 = 1.5 is shown 
in Fig. 7a. At t1/t2 = 2.0 the two Dirac points in the IBZ merge at 
Γ super-symmetric point and the energy dispersion becomes 
metallic in nature (Fig. 7b). The highest VB and lowest CB 
become flat and appear to meet at a small region, but without any 
linear dispersion in the energy relation. Upon further perturba
tion (t1/t2 > 2.0), there is a bandgap opening in the energy 
dispersion and both the Dirac points disappear (Fig. 7c). With 
further increase in t1/t2, the gap opening increases.  

(ii) For t1/t2 < 1.0, the Dirac points ‘A’ and ‘B’ move toward super- 
symmetric point X and M respectively as shown in Fig. 7d. The 
Dirac points shift unequally towards supersymmetric points but 
they do not merge to a single Dirac point and both of them exist 
for any value of t1/t2 < 1.0. We have observed that for t1/ t2→ 0 
the point ‘A’ meets to high-symmetric point X whereas the point 
‘B’ stays at the middle point of the super-symmetric line M - Γ. At 
t1/t2 = 0.0 i.e no hopping of electrons between inter-four- 
member Si tetra-rings and/or infinite hopping probability in the 
intra-Si tetra-rings, an insulating behavior is observed. This is due 
to the breaking of the periodicity of the TS in either direction 
which may behave as a TS quantum dot. Based on these results, 
we obtain the criterion for the existence of two Dirac points in the 
IBZ as 

0.0 <
t1

t2
< 2.0 (9) 

The change in hopping energy ratio corresponds to change in hop
ping matrix parameters (Vij

ppπ , Vij
ppσ) and angle (cos θij, sin θi,j) of the 

buckled structure w.r.t. xy- plane. 
It is to note that the slope of the bands near EF can be achieved by 

tuning the Dirac cone with the modification of hopping parameters, 
which in turn modifies the carrier mobility significantly. To realize the 
feasibility of band tuning by the hopping parameters, we apply uniaxial 
and biaxial stress up to 5% using DFT (not shown). We have observed 
that the Dirac cones remain intact with shifting of the point position 

accordingly, depending upon elongation or compression. So, Dirac 
points in TS are rather robust under the application of strain i.e sepa
ration (overlap of orbitals) between the neighboring atoms. Similar 
behavior was also observed for graphene [59,60].  

(iii) Now we consider the case when the on-site symmetry within the 
unit cell is broken, keeping hopping energy unchanged (t1 =

0.85eV, t2 = 0.9eV). For this, we consider two cases as,  
(a) The on-site energy of alternate atoms have different values as 

ε1 = εi∈{a,c,e,g} = +δ
ε2 = εi∈{b,d,f ,h} = − δ (10)  

Thus the atom with +δ on-site energy is connected with NN atoms 
with on-site potential − δ and vice-versa. We observe a bandgap 
opening is induced in the system even with the presence of small 
anisotropy in the on-site potential (Fig. 7e). This result is the 
consequence of the breaking of reflection symmetry, with time- 
reversal symmetry being intact in the system.  

(b) The on-site energy of the atoms of alternate Si-tetra rings are 
different as 

ε3 = εi∈{a,b,c,d} = +δ
ε4 = εi∈{e,f ,g,h} = − δ (11)   

Thus all the atom of a Si tetra-ring having on-site potential +δ is 
connected with four Si tetra-ring with all atoms in those rings having on- 
site energy − δ. It is observed that a small anisotropy in this form lifts 
the degeneracy of Dirac cone ‘B’ while keeping the Dirac cone ‘A’ intact 
as shown in Fig. 7f. However, the Dirac point ‘A’ moves toward super- 
symmetric point X. 

The stability and the robustness of the two Dirac cones of TS are quite 
different from another non-hexagonal graphene allotrope S-Graphene 
(SG), having two Dirac cones in the IBZ. The degeneracy of the indi
vidual Dirac cones as well as both the Dirac cones of SG can be removed 
by the conditions solely determined by the hopping parameters [32]. 
However as discussed, the degeneracy of the individual Dirac cones in 
TS cannot be lifted only by tuning the hopping parameters. This feature 
is quite interesting as the Dirac nature of the material remains inherent 
and is independent over a wide range of hopping parameters. 

3.4. Structural model for TSNRs 

One of the ways for bandgap tuning of 2D materials can be obtained 
by structural tailoring of the sheet as ribbons with different edge ge
ometry and width. Nanoribbons with armchair edges (ATSNR) and 
zigzag edges (ZTSNR) of different width are cut along x- and xy-axis (450 

Fig. 8. Structure of (a) S-ATSNR (b) A-ATSNR (c) ZTSNR.  
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with the x axes) respectively from the relaxed sheet as shown in Fig. 8. 
The ATSNR with width N can be divided into two groups viz. integer 
(half-integer) based on the opposite edges are symmetric (asymmetric), 
where N denotes the primitive unit cell of the TS. The ZTNRs has a lattice 
constant of 10.7588 Å. The width of the ZTSNR denotes the number of 
two interconnected tetra-rings in each unit cell as shown in Fig. 8c. The 
dangling bonds are passivated with hydrogen and are further relaxed 
until the residual force on each atom of TSNRs is converged below 0.02 
eV/Å. To avoid spurious interactions between the periodically repeated 
replicas of the ribbon, a vacuum region of 15 Å is set in the directions 
perpendicular to the ribbon axis. After optimizing, the Si− Si bond 
length is 2.30–2.31 Å and 2.25–2.26 Å for Si-tetra-rings and between NN 
tetra-rings respectively. The Si − H bond length is 1.50 Å. 

We checked the stability of TSNRs by calculating the formation en
ergy Ef per atom of the nanoribbons by using the equation, 

Ef =

(
Etot

TSNR − NSiESi − NHEH
)

NSi + NH
(12)  

where Etot
TSNR, ESi, EH are the total energy of the TSNRs, single Si atom, 

and a spin polarised hydrogen atom respectively. NSi and NH are the 
number of Si and H atom in the TSNR. The values of Ef for symmetric 
ATSNR (S-ATSNR), asymmetric ATSNR (A-ATSNR), and ZTSNR are 
tabulated in Table 3. A positive value of Ef suggests that TSNRs are 

stable and the values are comparable to the TS sheet (4.58 eV/atom). 
However, the stability of the narrowest NRs of each type is the least. 

3.5. Electronic properties of TSNRs 

Both the DFT and TB method are employed to construct and un
derstand the BS of the nanoribbons. The BS is calculated along the path Γ 
to X of the BZ. A simple 3pz-orbital NN-TB model is taken to explain the 
electronic structure of the TSNRs. To validate this assumption, we also 
performed the PDOS calculation for the TSNRs (not shown), which 
suggests that only 3pz orbitals contribute near the Fermi energy. 

3.5.1. Symmetric ATSNR 
The band structure of S-ATSNR for N = 1-5 is calculated using DFT. 

We have shown the band structure for N = 3-5 only in Fig. 9a. It is clear 
from the figure that multiple Dirac cones appear in the BS of A-ATSNR 
with the number of the Dirac cone depending on the width N of A- 
ATSNR. 

We have also calculated the BS of the S-ATSNRs using the NN-TB 
model. The unit cell of S-ATSNR having width N is shown in Fig. 9c. 
The periodic boundary condition with lattice translation vectors as 
Rx
̅→

= ax̂ is along x-direction only with a = 7.6074 Å. Hard walls are 
imposed at the edge boundary in y-direction, i.e. amplitudes of the basis 
wavefunctions will be zero beyond the hard wall. Due to this restriction 
in y-direction for the NRs, there will be some modification in on-site 
energy and hopping energy near the edge, though the difference is ex
pected to be small. Here we have argued that since there is nearly no 
change in bond length as obtained from DFT calculations, we neglect 
this difference and considered two types of NN hopping energy t1 and t2 
as defined earlier with zero electronic transfer through the hard wall. We 
also set all the on-site energies ε as zero. TB Hamiltonian matrix with the 
help of equation (7) can be written as N × N tridiagonal matrix as 

HN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Hb Hi 0 ⋯ 0
H†

i Hb Hi ⋯ 0
0 H†

i Hb ⋱ 0
⋮ ⋮ ⋱ ⋱ Hi

0 0 ⋯ H†
i Hb

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)  

where all the elements of the matrix is itself a 8× 8matrix. The matrix Hb 
has the form of 

Hb =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 t2 0 0 0 t1 0 0
t2 0 0 0 0 0 t1 0
0 0 0 t2 0 0 0 t1
0 0 t2 0 t1 0 0 0
0 0 0 t1 0 t2 0 t2α*

t1 0 0 0 t2 0 t2α* 0
0 t1 0 0 0 t2α 0 t2
0 0 t1 0 t2α 0 t2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)  

Hi is very sparse matrix with only two non-zero elements, 〈cN− 1

⃒
⃒
⃒Ĥ

⃒
⃒
⃒bN〉 =

〈dN− 1

⃒
⃒
⃒Ĥ

⃒
⃒
⃒aN〉 = t2. We have diagonalized equation (13) numerically and 

focus only on the two energy bands (UVB and LCB) near the Fermi level. 
Multiple Dirac points appear at the Fermi level, with the number 
increasing with the increase in the width of the NRs. The number of 
Dirac cones exhibit three-member family behavior. For instance, N = 1,2 
number of Dirac cones is N; for N = 3, 4, 5 number of Dirac cones are N −

1; for N = 6,7, 8 number of Dirac cones are N − 2; for N = 9, 10,11 
number of Dirac cones are N − 3 and so on. The typical band structure 
for N = 3-5 S-ATSNR using TB is depicted in Fig. 9b. The BS for larger N 
(=6-10) is shown in ESI Fig. 2, which shows the number of Dirac cones 
for each width of S-ATSNRs. 

Now we examine the stability of these Dirac cones by varying the 

Table 3 
Formation energy per atom Ef in eV/atom of the TSNRs. N is integer for S-ATSNR 
and ZTSNR, and half integer for A-ATSNR.  

N S-ATSNR A-ATSNR ZTSNR 

1/1.5 3.7619 3.9726 3.6397 
2/2.5 4.0898 4.1750 4.0489 
3/3.5 4.2323 4.2765 4.1985 
4/4.5 4.3102 4.3381 4.2860 
5/5.5 4.3593 4.3785 4.3411  

Fig. 9. (a) Band structure of S-ATSNR for width N = 3-5 calculated by DFT. EF 

is set to zero. (b) BS of S-ATSNR from TB model for N = 3-5. (c) Unit cell for S- 
ATSNR showing the periodicity of the atoms used for TB calculation. For the TB 
BS calculation we have set t1 = 0.85 eV and t2 = 0.9 eV. 
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hopping parameters. We have solved numerically equation (13) for 
different values of t1/t2 and results for S-ATSNR of width N = 4 are 
presented in Fig. 10. We observe that with the increase in t1/ t2 (>1) 
number of Dirac points decreases one by one and ultimately at t1/ t2 =

2.0 all the Dirac points disappear and band opening occurs. The NR 
becomes a semiconductor. This feature is quite similar to that of the TS 
sheet as discussed earlier. Here we have shown the BS for N = 4 at 
arbitrary value t1/t2 = 1.5, which shows existence of only two Dirac 
cones (Fig. 10a). But, with the decrease in t1/t2(<1), the number of Dirac 
points increases one by one and becomes equal to the width N of the 
NRs, though the band flattening occurs. Finally, the two bands are 
flattened to a line and meet the Fermi level at t1/t2→0. This result cor
responds to a breaking of periodicity along the x− axis, transforming the 
NR to a quantum dot. In Fig. 10b, we show the BS for N = 4 exhibiting N 
Dirac cones for t1/t2 = 0.5. 

For S-ATSNR, the slope of the multiple Dirac points increases along Γ 
to X. For N = 4, slopes of the Dirac points along Γ to X have values 1.8 eV, 
2.18 eV and 2.63 eV. The corresponding Fermi velocity calculated using 
equation (2) are vF ≈ 0.27 × 106 m/s, 0.33 × 106 m/s, 0.4× 106 m/s 
respectively along Γ to X. Thus, the velocity of Dirac Fermions increases 
along the super-symmetric line from Γ to X. In Fig. 11, we have plotted 
the Fermi velocity of the Dirac cone with a maximum magnitude of the 
S-ATSNRs (N = 3-9) calculated from the TB method. Fermi velocity 
obtained by DFT for N = 3-5 is shown for comparison, which suggests TB 
and DFT predict the nearly same Fermi velocity. The values of the vF are 
a little smaller than those obtained for the sheet. With the increase in 
width of the S-ATSNR, the Fermi velocity of the Dirac Fermions also 
increases gradually. It may be expected that at large N, the Fermi ve
locity of the S-ATSNR will match that of the sheet. 

3.5.2. Asymmetric ATSNR 
The DFT results for BS of the A-ATSNR for N = 3.5, 4.5, and 5.5 are 

shown in Fig. 12a. A direct gap opening is observed for all N except N =
1.5, where an indirect bandgap Eg is observed. The exception for N = 1.5 
arises due to the strong confinement effect and interaction between the 
edge states. Next, we numerically calculate the BS in the NN-TB 
framework. The unit cell of A-ATSNR having width N1

2 is shown in 
Fig. 12c. Similar to S-ATSNR, the periodic boundary condition with 
lattice translation vectors as Rx

̅→
= ax̂ is along x-direction only with a =

7.6074 and hard wall in y-direction. TB Hamiltonian matrix with the 
help of equation (7) can be written as 2N+1

2 × 2N+1
2 matrix as 

(15)  

where Hf is a 4× 4matrix has the form of 

Hf =

⎛

⎜
⎜
⎝

0 t2 0 t1
t2 0 t1 0
0 t1 0 t2α*

t1 0 t2α 0

⎞

⎟
⎟
⎠ (16) 

Fig. 10. (a) Decrease in the number of Dirac points, we set t1/ t2 = 1.5. (b) 
Increase in the number of Dirac points, we set t1/t2 = 0.5. 

Fig. 11. Fermi velocity (vF) of the Dirac cone with maximum value with width 
N of S-ATSNR calculated from TB. The DFT results for N = 3-5 are shown for 
comparison. The vF for sheet is also shown. 

Fig. 12. (a) and (b) BS of A-ATSNR with N = 4.5–6.5 calculated by DFT and TB 
method respectively. We set t1 = 0.85 eV, t2 = 0.9 eV and ε = 0.0 eV in the TB 
calculation. (c) Unit cell of A-ATSNR. In DFT band structure EF is set to zero for 
convenience. 

Table 4 
Bandgap Eg in eV of A-ATSNR for different width obtained by DFT and TB.  

NR width DFT TB 

1.5 0.293 0.231 
2.5 0.173 0.120 
3.5 0.057 0.051 
4.5 0.071 0.037 
5.5 0.036 0.024 
6.5 0.028 0.016  
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and Hd is a 4 × 8 matrix with only two non-zero elements 〈c0.5

⃒
⃒
⃒Ĥ

⃒
⃒
⃒b1〉 =

〈d0.5

⃒
⃒
⃒Ĥ

⃒
⃒
⃒a1〉 = t2 and all the zeros in first row are 4 × 8 matrix and zeros 

in the first column are 8 × 4 matrix. We have presented the typical 
values of the bandgap calculated by both DFT and TB results in Table 4. 

Both the DFT and TB calculations predict a bandgap opening which 
decreases with the width of the A-ATSNR. Though the values differ, the 
qualitative feature is similar in both methods. This discrepancy may 
arise since we take only a simple NN-TB model to extract the physics of 
the system. A higher-order term in TB may effectively match the results. 
The opening of the bandgap for A-ATSNR is due to the broken reflection 
symmetry which enters into equation (15) through the Hf block. In 
Fig. 12b, we have shown the BS using TB method for N = 3.5–5.5. 

The bandgap in A-ATSNRs is small and decreases gradually for width 
N ≥3.5. The signature of these semiconducting behavior in nanoribbons 
may emerge due to the interaction between the exotic edge states. For 
N ≥ 3.5 the edge states interact very weakly, which may result in small 
and nearly constant Eg. For small N ≤2.5 larger bandgap originates from 
the quantum confinement along with the contribution from the highly 
interacting edge states. 

We now evaluate the bandgap Eg as a function of hopping parameters 
t1/t2 for N = 4.5, 5.5, and 6.5 and is depicted in Fig. 13. For all the NRs a 

similar trend in bandgap variation is observed. For the NRs under 
consideration, maximum of Eg occurs when t1/t2 ∼ 0.4. The bandgap 
then decreases linearly with t1/t2 and finally at t1/t2 ≈ 1.95, Eg→0. The 
decrease in bandgaps Eg in the range 0.4 < t1/t2 < 2.0 are observed to 
follow an equation 

Eg ≈ − N − 2.22t1

t2
+ N − 1.82 (17)  

With the increase in t1/t2, the probability of hopping of an electron 
between inter Si-tetra ring atoms increases relative to the hopping be
tween Si-atoms in the tetra rings. Or in other words, the increase in t1/t2, 
increases the overlap of the orbitals among the inter tetra-ring Si atoms 
(along l1) relative to the intra-tetra-ring Si atoms (along l2). This in turn 
decreases the bandgap. At a small value of t1/t2, the electron confine
ment leads to a large bandgap. With the increase of t1/t2, this electron 
confinement behavior reduces, resulting in a decrease in the bandgap 
energy. Thus, we can tune the bandgap of the A-ATSNR solely by the 
hopping parameters and modify the semiconducting A-ATSNR to 
metallic A-ATSNR. However, this kind of modification is again difficult 
to implement as the hopping parameter t1 has to be increased by 100% 
or decrease t2 by 50%. However, the tuning of the hopping parameters 
up to a certain limit can be achieved by strain or under the influence of 
external magnetic flux [61]. 

To understand the origin of band-gaps in A-ATSNRs, we have plotted 
the charge densities for the highest occupied (HO) and lowest unoccu
pied (LU) bands in Fig. 14 for arbitrary N = 3.5. It is evident from the 
figure that the HO bands are contributed by the Si − Si bond of the tetra- 
rings along with the periodicity of the lattice i.e. l2 bonds along the x 
axis. The LU band is contributed by the alternate l1 and l2 bonds 
perpendicular to the x axis. 

3.5.3. ZTSNR 
Fig. 15a depicts the BS for ZTSNR for N = 3-5 as obtained by DFT. 

The BS for N = 1 and 2 are also calculated (not shown). However, the 
structure of ZTSNR for N = 1 does not reflect the periodicity of the TS 

Fig. 13. Variation of bandgaps Eg with t1/t2 for N = 4.5, 5.5, and 6.5; straight 
lines are fitted in the linear region. The vertical dotted line represents the value 
optimized value of t1/t2 = 0.944. 

Fig. 14. The charge density of (a) HO and (b) LU band distribution of A-ATSNR 
with N = 3.5. 

Fig. 15. (a) and (b) BS of ZTSNR with N = 3-5 obtained from DFT (EF = 0 is set 
for convenience) and TB respectively. As previous, we have set t1 = 0.85 eV, 
t2 = 0.9 eV and ε = 0.0 eV (c) Unit cell for ZTSNR. 
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sheet as can be observed in Fig. 15c. A very small bandgap Eg ∼ 0.02 eV 
exists for N = 2,3 at the super-symmetric point X. With an increase of 
width N ≥ 4, the system behaves as a degenerate semiconductor with 
two Dirac cones with a very small gap ∼ 0.003 eV- one just below EF and 
other just above EF. The Dirac cone just below EF appears at the super- 
symmetric point X. The DOS plot (not shown) also shows a zero den
sity of states at the EF. 

We now employ the simple NN-TB Hamiltonian with π-orbitals only 
to extract the physics and behavior of these systems. The TB Hamilto
nian matrix can be written using equation (7) as N × N as 

HN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H1 Hz 0 0 ⋯ ⋯ 0
H†

z H2 Hz 0 ⋯ ⋯ 0
0 H†

z H1 Hz 0 ⋯ 0
⋮ 0 H†

z H2 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ Hz 0
0 0 0 ⋯ H†

z H1 Hz

0 0 0 ⋯ 0 H†
z H2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(18) 

Every element of the matrix is itself an 8 × 8 matrix, with 

H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 t2 0 t2 0 t1α* 0 0
t2 0 t2 0 0 0 0 0
0 t2 0 t2 0 0 0 t1
t2 0 t2 0 0 0 0 0
0 0 0 0 0 t2 0 t2

t1α 0 0 0 t2 0 t2 0
0 0 0 0 0 t2 0 t2
0 0 t1 0 t2 0 t2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19)  

and 

H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 t2 0 t2 0 t1 0 0
t2 0 t2 0 0 0 0 0
0 t2 0 t2 0 0 0 t1α
t2 0 t2 0 0 0 0 0
0 0 0 0 0 t2 0 t2
t1 0 0 0 t2 0 t2 0
0 0 0 0 0 t2 0 t2
0 0 t1α* 0 t2 0 t2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(20)  

Hzis a very sparse matrix with only non-zero elements are 〈bN− 1

⃒
⃒
⃒Ĥ

⃒
⃒
⃒gN〉 

= 〈eN− 1

⃒
⃒
⃒Ĥ

⃒
⃒
⃒dN〉 = t1. 

For comparison, we have reproduced TB results for N = 3-5 in 
Fig. 15b respectively. The number of Dirac points increases with the 
width of the NRs. Contrary to DFT results, the Dirac cones obtained by 
the NN-TB method appears at the Fermi level. Linearity in the energy 
dispersion towards ‘X’ super-symmetric point is observed. With the in
crease in the t1/t2 ratio, the number of Dirac points decreases, with the 
band becomes broadened gradually, and finally one Dirac point at super- 
symmetric point ‘X’ exists only at larger values of t1/ t2 (∼2). With the 
decrease of t1/t2, all Dirac points start shifting towards super-symmetric 
point ‘X’ with a continuous band flattening. In Fig. 16a and b we have 
shown the band structure for N = 4 and t1/t2 = 1.5 and 0.5 respectively. 

Our theoretical study of the band tuning will motivate the scientific 
community for further and detailed research regarding its synthesis, 
application, and exploration of other properties. Whenever the experi
mental preparation of 2D TS sheets and TS nanoribbons are concerned, it 
is well known that any form of silicene whether hexagonal or tetragonal 
cannot be made by exfoliation as done in the case of graphene [62]. It 
turns out that Ag (111) surface is the most commonly used substrates for 
silicene due to the efficient controlled interaction between silicene and 
Ag having similar lattice constants. Apart from mechanical support, the 
substrate offers the opening of the bandgap without degrading the 
essential electronic properties of silicene. It is the essential van der 
Waals (vdW) interaction prevailing between silicene and substrate 
responsible for the sublattices’ symmetry breaking leading to the 
opening of the bandgap. With the help of an appropriate catalyst, it 
might be possible to synthesize stable tetragonal silicene (T-silicene) on 
Ag/Au/Ir/ZrB2/ZrC or other important 2D substrates at some critical 
temperature and pressure. Besides, various 2D substrates for T-silicene 
can lead to heterostructures having enough potential to be applicable for 
tunable and tiny electronic devices. The intriguing tunable character
istic features (direct and indirect) of the bandgap of hydrogenated 2D 
tetragonal silicenes under biaxial strain may indicate some futuristic 
applications in spintronic devices [47]. The interplay of SOC may open 
up new directions in the topological aspect of this material [17,58]. If 
T-silicene is synthesized, then nanolithography technology can be used 
to design various TS nanoribbons with diverse edge states and symme
try. The interplay of various Dirac cones in TS nanoribbons may lead to 
some exotic potential applications in spintronics, FETs, and sensors in 
the near future. 

4. Conclusion 

In this work, we systematically explore the mechanical and elec
tronic properties of the stable non-hexagonal silicon allotrope T-silicene 
sheets and nanoribbons. We employ both first-principle calculation as 
well as the NN-TB model to explore the intriguing physics involved in 
the band structure of these systems. The TS sheet is mechanically stable 
with the elastic constants being comparable with that of silicene. The 
band structure of the TS sheet exhibits two Dirac cones at EF in the IBZ 
suggesting a semi-metallic behavior with a negligible effect of SOC on 
the band structure. Fermi velocity calculation indicates that the charge 
carriers behave as massless Dirac fermions. The results obtained by the 
TB method conform to the DFT results. The TB hopping parameter 
values for the TS sheet are identical to that of silicene. The Dirac points 
of the sheet are robust and stable for a wide range of hopping energy 
ratios, i.e. 0.0 < t1/t2 < 2.0. A small anisotropy in the on-site energy 
between alternate atoms lifts the degeneracy of the Dirac cones. The 
degeneracy of the Dirac cone ‘B’ (on Γ − M symmetry path) is only 
removed with the introduction of asymmetry in the on-site energy of the 
alternate Si tetra-rings. The NRs cut from the TS sheet are stable and 
their electronic properties strongly depend on the width and the edge. 
The band structure of S-ATSNR shows multiple Dirac points in the IBZ, 
depending on the width of the NRs. The number of Dirac cones of S- 
ATSNR depends on the hopping parameters and is equal to the width N 
of the NRs for small TB hopping ratio (t1 /t2 < 1.0). The A-ATSNR shows 
a semiconducting nature, with a bandgap decreasing gradually with the 
increase of width as well as the ratio t1/t2. DFT results predict that 
ZTSNR is a degenerate semiconductor with the presence of Dirac cones 
just below and above the Fermi level. The signature of the metal/ 
semiconductor behavior of the NRs may be due to their crucial edge 
states. While symmetric edge states of S-ATSNR and ZTSNR give rise to 
Dirac features in the nanoribbons, asymmetric edge states in A-ATSNR 
show a gap opening in the band structure. The tuning of the band 
structure of the TS by tailoring into NRs and/or modulating the hopping 
parameters may motivate the experimentalist for its synthesis and future 
application in nano-electronics. Fig. 16. (a) Decrease in the number of Dirac points, for an arbitrary value of t1/

t2 = 1.5. (b) Shifting of the Dirac points for t1/t2 = 0.5. Here width N = 4. 
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