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Abstract
We had already derived the criteria for thermal stability of charged rotating 
quantum black holes, for horizon areas that are large relative to the Planck 
area. We also had extended it for black holes with arbitrary number of hairs 
in arbitrary dimensional spacetime. We found that most of the criteria for 
thermal stability are satisfied even by some unstable black holes, although 
they do not satisfy all the criteria. These black holes are called ‘Quasi Stable’ 
black holes. We have already calculated thermal fluctuations and correlations 
among hairs of a stable quantum black hole. In this paper, we extend this 
work for quasi stable quantum black holes. We get the interesting result that 
quasi stable black holes have finite fluctuations and correlations for some of 
its hairs, although the black hole will ultimately radiate away due to Hawking 
radiation. We have also shown that quasi stable black holes may decay in a 
slower rate in comparision to unstable black holes.

Keywords: black hole thermodynamics, quasi stability of black hole, black 
hole radiation, loop quantum gravity

1.  Introduction

Semiclassical analysis of black hole thermodynamics lacks from the fact that it treats space-
time as classical entity [1–5]. So, complete analysis for black hole thermodynamics has to be 
studied, from a perspective that relies on a definite proposal for quantum spacetime (like loop 
quantum gravity [6, 7]). A consistent understanding of quantum black hole entropy has been 
obtained through loop quantum gravity [8, 9], where not only has the Bekenstein–Hawking 
area law been retrieved for macroscopic (astrophysical) black holes, but a whole slew of cor-
rections to it, due to quantum spacetime fluctuations have been derived as well [10–15], with 
the leading correction being logarithmic in area with the coefficient  −3/2.
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Thermal behaviour of a quantum black hole depends on all its hairs [16]. Using the idea of 
thermal holography [17, 18] and the saddle point approximation, the canonical partition func-
tion is evaluated corresponding to the horizon, retaining Gaussian thermal fluctuations. This 
has been generalised first for charged rotating black holes [19] and then that has been extended 
for black holes with arbitrary number of hairs in any spacetime dimension [16]. We have got 
a set of inequalities as criteria for thermal stability of a quantum black hole, immersed in a 
thermal bath. It is found that some black holes satisfy most of these criteria, but not all. These 
black holes are called ‘Quasi Stable’ black holes.

We have earlier calculated thermal fluctuations and correlations among hairs of a generic 
thermally stable quantum black hole. We then have considered AdS black holes as examples 
[20]. We have found that these fluctuations are finite and can be expressed as ratio of sub 
determinants of Hessian marix [20] that are necessarily positive for a stable black hole. We 
have also seen that some of the sub determinants are positive even for a quasi stable black 
hole. This hints to the fact that quasi stable black holes may have finite fluctuations for some 
of its hairs. With this motivation and previous knowledge [16, 19, 20], thermal fluctuations 
and correlations among the hairs of a large quasi stable black hole are calculated. It is found 
that our intuition is right i.e. some of these fluctuations and correlations are finite, although 
the black hole is ultimately unstable under Hawking radiation. We have also found that quasi 
stability can reduce the rate of decay of the black hole under Hawking radiation.

The paper is organized as follows: the physical meaning of the stability criteria are made 
clear in section 2. In the next section, procedure of detailed calculation for thermal fluctua-
tions and correlations among various hairs are done for a general quasi stable quantum black 
hole. This section is followed by the section containing the calculations for some quasi sta-
ble black holes as examples. In the succeeding section, we have described the relationship 
between quasi stability and decay rate of a quasi stable black hole under Hawking radiation. 
The last section contains a brief summary and outlook.

2.  Black hole stability and thermal fluctuation

In semiclassical analysis of black hole thermodynamics, black holes are still treated classi-
cally and its boundary is represented by the event horizon [3, 4]. Partition function is evaluated 
there by allowing the fluctuations of metric of the black hole. But in a full-fledged theory of 
quantum gravity, we do not require any global knowledge of black hole spacetime through 
its metric. Infact black holes at equilibrium are there represented by isolated horizons, which 
are internal boundaries of spacetime. Hence mass of a black hole can be defined locally on 
this horizon [21, 22]. It has been shown [16, 19] that partition function of a black hole can be 
derived interms of its boundary partition function only. It has also been shown there that parti-
tion function of a black hole, in a theory of quantum gravity, turns out to be given in terms of 
fluctuations of its parameters that contribute to its mass.

Consider a black hole immersed in a heat bath, at some (inverse) temperature β, with 
which it can exchange energy and all its ‘n’ hairs(charges). The equilibrium configuration of 
the black hole is given by the saddle point ( Ā, C̄1, . . . , C̄n) in the (n + 1) dimensional space 
of integration over area and n charges, where Ā is horizon area A at equilibrium and C̄i is the 
charge Ci at equilibrium. The grand canonical partition function is calculated for fluctuations 
a = (A − Ā), ci = (Ci − C̄i) around the saddle point. Hence the grand canonical partition 
function (ZG) can be written as [19]
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ZG = exp[S(Ā)− βM(Ā, C̄1, ..., C̄n) + βPiC̄i]

×
∫

da
( n∏

i=1

∫
dci

)
exp{−1

2
[(βMAA − SAA)a2 + 2

n∑
i=1

βMACi aci

+

n∑
i=1

n∑
j=1

βMCiC j cic j]},

�

(1)

where Pi,β are potential corresponding to charge Ci and inverse temperature of the black hole 
respectively. The stability criteria have been derived [16] from the above expression of partion 
function (ZG) and are given as follows:

D1 = (βMAA − SAA) > 0, D2 =

∣∣∣∣∣
βMAA − SAA βMAC1

βMAC1 βMC1C1

∣∣∣∣∣ > 0, . . . , Dn+1 = |H| > 0.� (2)

Where, |H| = determinant of the real symmetric (n + 1) dimensional square Hessian matrix 
H, whose elements are H11 = (βMAA − SAA), H1i = βMACi , Hi+1,j+1 = βMCiC j; i, j = 1, . . . n.

Of course, (inverse) temperature β is assumed to be positive for a stable configuration.
If a black hole is totally chargeless, then positivity of D1 will be the sole criteria for its thermal 

stability. For such a black hole, specific heat (C) can be expressed as, C ≡ dM/dT = (SA)
2/D1. 

Thus positivity of D1 implies positivity of specific heat and hence the black hole is thermally 
stable.

For an arbitrary black hole, variation of its temperature (T ) with area is given as, 
dT/dA = D1 · MA/(SA)

2. So, a black hole having negative D1 will either grow in size indefi-
nitely as it cools down or shrink indefinitely as it becomes hotter and hotter. Both the situa-
tions are the sign of instability.

The fluctuation for the charge Ci will be denoted as ∆(Ci)2. Similarly ∆(A)2 will denote 
the fluctuation in area of the black hole. The correlation between charge Ci and Cj  will be 
denoted as ∆CiC j. So, ∆CiA will correspond the correlation between charge Ci and area A. 
We will strict to this notation1 throughout the paper.

We will now see that D1, D2, D3, . . . , Dn+1 are related to the fluctuations of the charges and 
area of the black hole. For sake of simplicity, we take n  =  1. In this case, stability criteria will 
be D1, D2 > 0. The fluctuation of charge C1 and area A are give as [20],

∆A2 = βMC1C1/2D2, ∆(C1)2 = D1/2D2.

∴ Both ∆A2 , ∆(C1)2 decrease with the increment of D1, D2 and vice versa. Thus gradual 
decrement of D1, D2 will increase the fluctuations and hence entropy of the black hole will 
decrease [25]. So the entropy of the outside universe will increase because of Hawking radia-
tion. When, ultimately, one of the D1, D2 becomes negative, Hawking radiation starts to domi-
nate over accretion completely. As a result of this, black hole starts to decay. This analysis is 
true for any value of n. Thus D1, · · · , Dn+1 controll the entire thermodynamics of a black hole 
around its equilibrium.

Instability of a black hole is artifected by the fact that unbounded fluctuations take the 
black hole far away from the equilibrium via Hawking radiation. Quasi stable black holes are 
ultimately unstable. Hence one would expect that fluctuations for a quasi stable black hole 
would blow up and hence it would drive the system far from equilibrium. But, surprisingly, 

1 Notations, used in this paper, differ from the notations used in ref no. [20]. In that ref, (∆Ci)2 denotes the fluctua-
tion for charge Ci and so on.
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this answer is not entirely right. We will see that fluctuations of some hairs can be finite for 
quasi stable black holes. This fact is really a stepping stone to understand the physical mean-
ing of quasi stability. We will describe the mathematical formulation of fluctuations and cor-
relations among hairs for these black holes in the next section.

3.  Fluctuation theory of quasi stable black holes

We know how to calculate fluctuations and correlations for a stable black hole within the 
rigime of stability in parameter space [20]. In those cases, we can calculate the partition 
function in any basis of our convenience as the result is converging. We can thereon calculate 
fluctuations and correlations for various hairs of the black hole. But this procedure does not 
hold for quasi stable black holes as partition function is diverging. So, we have to necessarily 
rearrange the partition function in the diagonal basis of Hessian matrix and we then have to 
look for stable modes. We can calculate fluctuations only for these stable modes, although the 
partition function is diverging.

Now, we can rewrite the expression (1) of grand canonical partition function (ZG) in the 
diagonal basis of Hessian matrix as,

ZG =
( n+1∏

j=1

∫
dc j

)
exp{−1

2
[D1(c1)2 +

D2

D1
(c2)2 + . . .+

Dn+1

Dn
(cn+1)2]}

� (3)
where the expressions of D1, D2, . . . , Dn+1 are same as given in (2). The new variables 
(c1, . . . , cn+1) are related to the old variables (a, c1, . . . , cn) by some linear transformation. 
The linear transformation matrix is a (n + 1) dimensional upper triangular square matrix and 
hence it has unit determinant. The elements of this transformation matrix are functions of the 
elements of the Hessian matrix H.

If atleast one of D1, D2
D1

, . . . , Dn+1
Dn

 is neagative, then ZG blows up. This means that the black 
hole can not be stable. ZG diverges in all the directions c1, c2, . . . , cn+1 i.e. diverges maximally 

when D1, D2
D1

, . . . , Dn+1
Dn

 are all negative individually. This implies,

D1, D3, D5, . . . < 0
D2, D4, D6, . . . > 0.
� (4)

This shows that maximally diverging partition function corresponds to quasi stable black 
holes.

On the other hand, if the black hole is totally unstable i.e. D1, D2, D3, . . . , Dn+1 are simul-
taneously negative then ZG diverges only in the direction of c1 i.e. ZG is minimally diverging.

It was shown [16] that a black hole with n charges has to satisfy (n + 1) conditions to 
become thermally stable. But it was also proven that [19] electrically charged, rotating black 
hole has to satisfy seven conditions to prove its stability. Actually three of these seven condi-
tions are independent, rest depend on those three conditions. This fact is true only for stable 
black holes, not for quasi stable black holes. Let us consider n  =  1 case to understand this 
important issue.

n  =  1 implies that black hole has only one charge C1. Thus the stability criteria is given as 
[19] βMC1C1 , D1, D2 > 0.

If D1 and D2 are positive, then βMC1C1 has to be positive and hence stability criteria can 
also be written as, D1  >  0 and D2  >  0 [16]. But if D1 and D2 are negative, then sign of βMC1C1 
is free. Thus a black hole of n charges, having D1, D2, · · · , Dn+1 < 0, can be quasi stable as 
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well. To ensure it, one has to check the positivity of determinants of all (2n+1  −  1) submatrices 
of Hessian matrix H (including itself). Even if one of them is positive, then black hole is quasi 
stable.

We will now discuss the formulation of calculation for the fluctuations of quasi stable 
black holes. For sake of simplicity as well as practical consideration, we will take ‘n’ equals 
to 2. But all the results hold equally for arbitary n. For n  =  2, we can write down the partition 
function as,

ZG =

∫ ∫ ∫
dadc1dc2 · exp

(
− 1

2
(
D1a2 +

D2

D1
(c1)2 +

D3

D2
(c2)2))� (5)

where,




a
c1

c2


 =




1 d
x

f
x

0 1 e−df/x
((xb−d2)/x)

0 0 1







a
c1

c2


 .� (6)

Instead of denoting the new basis as (c1, c2, c3), we are denotaing it as (a, c2, c3).
Various terms are given as,

x = βMAA − SAA, b = βMC1C1 , d = βMAC1 , c = βMC2C2 , e = βMC1C2 , f = βMAC2

∴ D1 = x, D2 = (xb − d2), D3 =
(

x(bc − e2)− d(cd − ef ) + f (de − bf )
)

Now consider a quasi stable black hole, having D1, D2, D3 < 0. This consideration is 
extremely interesting as upto this point we can not distinguish quasi stable black holes from 
completely unstable black holes. We will see later how can we really distinguish quasi stable 
black holes from completely unstable black holes and move on to calculate fluctuations for 
quasi stable black holes.

The fluctuation for the charge (C2)2 is given as,

∆(C2)2 =

∫ ∫ ∫
dadc1dc2 · (c2)2 · exp

(
− 1

2

(
D1a2 + D2

D1
(c1)2 + D3

D2
(c2)2

))

∫ ∫ ∫
dadc1dc2 · exp

(
− 1

2

(
D1a2 + D2

D1
(c1)2 + D3

D2
(c2)2

)) .

� (7)
This is a converging intergral and is equal to D2/2D3. Relation (6) implies that c2 = c2 and 

hence ∆(C2)2 = ∆(C2)2.
Similary we can calculate the fluctuation for the charge(C1) and is given as, 

∆(C1)2 = D1/2D2. Ofcourse C1 is not a physical charge, but it is a combination of physical 
charges C1, C2 and that combination can be extracted out from the relation (6).

It is clear from relation (6) that we can choose appropriate tranformation matrix such that 
c1 = c1. In that case, ∆(C1)2 would be given, from symmetry argument, as,

2 Fluctuation of charge C2 is denoted as c2. Similarly, we are defining charge C2 as whose fluctuation is c2. There-
fore new charge C1 can be defined in same spirit.

A K Sinha﻿Class. Quantum Grav. 36 (2019) 035003
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∆(C1)2 =

(
βMAA − SAA

)
· βMC2C2 − (βMAC2)2

2D3
.

We will now assume, for example, that these quasi stable black holes (i.e. D1, D2, D3 < 0) 
have the properties, namely, MC1C1 > 0 and (MC1C1 MC2C2 − (MC1C2)2) > 0. We are consider-
ing quasi stable black holes of this kind as we have already tested the stability criteria of them 
[16, 19]. Anyway, our formalism does hold in general. In this case, we will denote the new 
basis as (ã, c̃1, c̃2) and is related to the old basis as,




c̃1

c̃2

ã


 =




1 d
b

e
b

0 1 f−de/b
(c−e2/b)

0 0 1







c1

c2

a


 .� (8)

Where, (b, c, d, e, f ) are same as before.
We can now express the partition function in the new basis and can calculate fluctua-

tions, exactly like the previous situation. The fluctuations are calculated as, ∆(C̃1)2 = 1/2b, 

∆(C̃2)2 = b
2(bc−e2)

 and ∆A2 blows up.
Now, C1 is linear combination of physical charges C1, C2 and hence ∆(C1)2 is a linear com-

bination of fluctuations and correlations between C1 and C2. Similarly ∆(C̃1)2 and ∆(C̃2)2 are 
same among C1, C2 and A. This fact, along with the equations (6) and (8), implies that ∆C1C2 
is finite, while ∆C1A and ∆C2A are diverging. These results can be viewed as follows:

In the three dimensional space of fluctuation (a, c1, c2), fluctuations are converging in the 
particular two dimensional subspace, consisting of c1 and c2. That is why the black hole is 
stable in this subspace. But departure from this subspace makes the black hole unstable with 
large fluctuations in other directions. This makes the black hole quasi stable as a whole.

4.  Examples of fluctuations for quasi stable black holes

It can be easily shown that asymptotically flat Schwarzschild black hole (AFSBH) is thermally 
unstable as D1(= βMAA − SAA) is always negative. It has already been shown that asymp-
totically flat Kerr–Newman black hole (AFKNBH) is also thermally unstable [19]. But the 
terms MQQ, (MQQMJJ − (MQJ)

2) are positive throughout the parameter space for AFKNBH. 
Infact all the stability criteria, except the positivity of |H|, hold in some region of parameter 
space(A, Q, J). Thus comparing AFSBH and AFKNBH, we can conclude that addition of 
charge Q and angular momentum J tend to stabilize the black hole, although ultimately remain 
unsuccessful. So, black holes having charge and angular momentum are the viable candidates 
to be quasi stable.

We have studied black holes having traditional hairs like electric charge, angular momen-
tum [19] and also have studied black holes with non traditional hairs like magnetic charge, two 
independent angular momentum etc [16]. Among these examples, it was found that Kerr–Sen 
black hole and Asymptotically flat Kerr–Newman black holes have some similarities in struc-
ture. Thus Kerr–Sen black hole is extremely interesing for the purpose of investigation of 
quasi stable black holes and their fluctuations. So, we will start with Kerr–Sen black black 
hole in details.

A K Sinha﻿Class. Quantum Grav. 36 (2019) 035003
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4.1.  Kerr–Sen black hole

Kerr–Sen black hole is also known as asymptotically flat string theoretic black hole [23]. We 
have already proven that this type of black hole can not be thermally stable under Hawking 
radiation [19]. The dependence of its mass on its charge, area and angular momentum can be 
read from [23] and is given as,

M2 =
A

16π
+

Q2

2
+

4πJ2

A
.� (9)

One can easily show from the above expression that MQQ, MJJ and (MQQMJJ − (MJQ)
2) are 

always positive. Hence Kerr–Sen black hole is quasi stable under Hawking radiation.
With resemblance to the general analysis of fluctuation theory, we assume C1 ≡ Q and 

C2 ≡ J . We have already seen that positivity of temperature implies J
A < 1

8π. We will now 

assume that both J
A and Q

2

A  are sufficiently smaller than unity. Ofcourse we can calculate fluc-
tuations in any regime. We choose this particular regime as this is the far extremal limit of 
AFKNBH and hence we can check the similarities in fluctuations of these two black holes. We 
will calculate the fluctuations, but only the leading order contribution, in the limit Q

2

A , J
A � 1. In 

this limit eqn no. (9) can be approximated as, M ≈ A1/2

4π1/2 +
π1/2Q2

A1/2 + 8π3/2J2

A3/2 − 2π3/2Q4

A3/2 . Ofcourse 

this is the leading order approximation. Infact we will now on consider leading order values 
only. Using this approximated form of mass and the formalism described in the last section, 
we can easily calculate ∆Q2, ∆J2 and ∆QJ  and they are given as,

∆Q2 ≈ AP

8π
, ∆J2 ≈ APA

64π2 and ∆QJ ≈ −3π2APQJ
A

It is extremely intersting to note that leading order fluctuation of charge and angular 
momentum are independent of charge and angular momentum, like stable AdS black holes. 

Infact for charge, this value is a constant. Again, |∆QJ|
QJ ≈ 3π2AP

A  and is tiny small fraction. More 

importantly this measure of correlation does not depend on charge (Q) and angular momen-
tum (J). These values show that Kerr–Sen black hole may not be stable under Hawking radia-
tion, but they are completely stable in (q, j) subspace of the whole fluctuation space.

4.2.  Kerr–Newman black hole

It has already been proven that Kerr–Newman black hole can not be thermally stable under 
Hawking radiation [19]. The Smarr formula expresses mass of the black hole as function of its 
area, charge and angular momentum and it is read as [24]

M2 =
A

16π
+

π

A
(4J2 + Q4) +

Q2

2
.� (10)

It is easy to check that MQQ, MJJ and 
(

MJJMQQ − (MJQ)
2
)
 are always positive and hence 

Kerr–Newman black hole is quasi stable under Hawking radiation, exactly like Kerr–Sen 
black hole.

Now we have alrady seen [19] that positivity of temperature, for this black hole, implies 
that J

A < 1
8π and Q2

A < 1
4π . We will now consider KN black holes that are far extremal i.e. 

J
A � 1

8π and Q2

A � 1
4π. We choose this regime to calculate various fluctuations only for com-

putational simplicity, but same formalism will hold in any regime. We are here interested to 
calculate the leading order contributions only. In the far extremal limit, the mass of the black 
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hole (10) can be approximated as, M ≈ A1/2

4π1/2 +
π1/2Q2

A1/2 + 8π3/2J2

A3/2 . This approximated form of 

mass enables us to calculate the leading order values of ∆J2,∆Q2,∆QJ  and they are exactly 
same as that of far extremal KS black hole with small charge and angular momentum. This 
implies that in far extremal limit KN black hole behaves like far extremal KS black hole with 
small charge, in thermodynamic sense.

Thus we see that a black may not be completely stable under Hawking radiation i.e. quasi 
stable, but it can still have various interesting thermodynamic properties, like a fully stable 
black hole.

5.  Quasi stability and hawking decay

Thermal stability criteria are obtained in form of a series of inequalities. Quasi stable black 
holes satisfy some of these criteria simultaneously but not all. Thus quasi stable black holes 
possess features of both stable and unstable black holes. We have shown that quasi stable 
black holes do have small fluctuations for some of its hairs like a stable black hole. Stable 
black holes do not decay under Hawking radiation. Fluctuations of all the hairs of a stable 
black hole is very small and hence the black hole remains stable under Hawking radiation. 
Now all the fluctuations are not small for a quasi stable black hole and hence it ultimately 
decays under Hawking radiation. But some of its fluctuations are small and hence a quasi 
stable black hole is expected to show some resistance in its decay process. Hence an overall 
delay may occur during the full process of decay of the quasi stable black hole.

The decay of a black hole is approximately governed by Stefan–Boltzmann law as the 
profile of black hole radiation is approximately equal to that of a black body. So, luminosity 
(L), defined as the power radiated per unit surface area, is proportional to the fourth power of 
its temperature (T) i.e. L ∝ T4. So the variation of luminosity with the area of black hole is 
given as,

dL
dA

∝ dT
dA

∝ D1

= βMAA − SAA.

� (11)

Now, D1 is negative for a unstable black hole, e.g. asymptotically flat schwarzschild black 
hole and hence luminosity gradually increases with the decay of the black hole. But if D1 is 
positive for some quasi stable black hole, then luminosity gradually decreses with the decay 
of this black hole. Thus the black hole tries to resist the decay process and hence delay occurs 
in the process. Now, we will consider the examples of two quasi stable black holes and will 
show that D1 is positive for them in some region of parameter space.

The mass of a AFKN black hole is given as, M2 = A
16π + π

A (4J2 + Q4) + Q2

2 . Thus posi-

tivity of temperature (T = MA
SA

) implies A2 > 16π2(4J2 + Q4). We also find that positivity of 
D1 implies 96π2(4J2 + Q4) > A2. So, a real AFKN black hole has positive D1 in the regime 
96π2(4J2 + Q4) > A2 > 16π2(4J2 + Q4). This implies that this black hole has a ‘window’ in 
parameter space such that D1 is positive there.

Similarly the mass of quasi stable Kerr–Sen black hole is given as, M2 = A
16π + 4πJ2

A + Q2

2 . 

We can show like previous case that D1 is positive in the ‘window’ 8πJ < A < 8
√

6πJ. Infact 
this ‘window’ is obtained for small value of charge Q and actually the ‘window’ will be broad-
ened for large value of Q.

A K Sinha﻿Class. Quantum Grav. 36 (2019) 035003
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From the above two examples, we find that quasi stable black holes may not lie within the 
‘window’ at early stage due to large area and hence negativity of D1 makes decay process 
gradually rapider as it progresses. After becoming appropriately smaller, black hole enters in 
the ‘window’ and this makes D1 positive. Hence the black hole starts to show its repulsion 
to support the decay process. Thus delay occurs and consequently life time of the black hole 
increases.

6.  Discussion

Quasi stable black holes, like unstable black holes, have diverging partition function with 
large fluctuations for some of its hairs. They ultimately decay under Hawking radiation. But 
simultaneouly these black holes have finite fluctuations for some of its hairs. They show resist
ance in the decay process of Hawking radiation. This feature is somewhat like a stable black 
hole. Thus quasi stable black holes have this duality property. It is to be noted that our formal-
ism holds for macroscopic black holes i.e. black holes whose area is larger than Planck area. 
But close to the end state, the area of a black hole is comparable to Planck area and hence 
we have to solve the complicated Hamiltonian constraint. We can nevertheless say that there 
would be some remnant of a black hole at the end state, with a minimum area according to 
the theory like LQG. This fact has been mentioned in [26] where it is concluded that these 
remnants could form component of dark matter as well. In this sense, our analysis may have 
some impacts on the dark matter physics.

In ordinary thermodynamics, people are interested to calculate thermal fluctuations of vari-
ous macroscopic parameters of a thermodynamical system as these quantities are related to 
physically measurable quantities e.g. fluctuation in energy measures the specific heat of a 
system. We, earlier, had derived [16, 19] the criteria for thermal stability as certain mathemati-
cal inequalities. But the correponding physical meanings were not clear at that time. But the 
meanings are made clear in this paper. The inequalities of stability criteria are directly related 
to fluctuation and correlation functions. We had made [19] certain assumptions regarding the 
nature of quantum spacetime and LQG is a theory which supports them. But our assumptions 
are so general that any theory of quantum gravity would respect those. Hence the notion of 
quasi stability is also expected to be extremely generic in any theory of quantum gravity. We 
have studied KS and KN black holes as example of quasi stable black holes. We found that 
in far extremal limit, fluctuations for certain parameters of these black holes match with that 
of stable AdS black holes. Now, the AdS/CFT correspondence tells that asymptotically AdS 
black hole is dual to a strongly coupled gauge theory at finite temperature [27–30]. It is pos-
sible to analyze the strongly correlated condensed matter physics using AdS/CFT correspond-
ence. Thus our calculations for quasi stable black hole may have some imprints to condensed 
matter physics as well.
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