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We have already derived the criteria for thermal stability of charged rotating quantum

black holes, for horizon areas that are large relative to the Planck area. The derivation is
done by using results of loop quantum gravity and equilibrium statistical mechanics of

the grand canonical ensemble. We have also showed that in four-dimensional spacetime,

quantum AdS Kerr–Newman black hole and asymptotically AdS dyonic black hole with
electric and magnetic charge are thermally stable within certain range of its parameters.

In this paper, the expectation values of fluctuations and correlations among horizon
area, electric charge and angular momentum (magnetic charge) of these black holes

are calculated within their range of stability. Interestingly, it is found that leading order

fluctuations of electric charge and angular momentum (magnetic charge), in large horizon
area limit, are independent of the values of electric charge and angular momentum

(magnetic charge) at equilibrium.

Keywords: Quantum black hole; black hole thermodynamics; thermal stability.

PACS Nos.: 04.70.-s, 04.70.Dy

1. Introduction

It has been shown semiclassically that non-extremal, asymptotically flat black holes

are thermally unstable under Hawking radiation, with negative specific heat.1 This

motivated the study of thermal stability of black holes from the perspective of

quantum spacetime (like Loop Quantum Gravity,2,3). A consistent understand-

ing of quantum black hole entropy has been obtained through Loop Quantum

Gravity,4,5 where a whole slew of corrections to the Bekenstein–Hawking area law,

due to quantum spacetime fluctuations, have been derived,6–11 with the leading

correction being logarithmic in area with the coefficient −3/2.
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In general relativity, a black hole is characterized by its mass (M), charge (Q)

and angular momentum (J). So, it is expected that thermal behavior of a quantum

black hole will depend on all of these parameters. The simplest case of vanishing

charge and angular momentum had been investigated a long time ago12–14 and

that has been generalized, via the idea of thermal holography,15,16 and the saddle

point approximation to evaluate the canonical partition function corresponding

to the horizon, retaining Gaussian thermal fluctuations. This body of work has

been generalized recently17 for charged rotating black holes. It is shown that anti-

de Sitter (AdS) Kerr–Newman black hole (for a certain range of its parameters)

is thermally stable. In fact, the conditions for thermal stability of a macroscopic

quantum black hole with arbitrary number of hairs in arbitrary spacetime dimension

has already been derived too.18 It turns out that asymptotically AdS dyonic black

holes with electric and magnetic charge are also thermally stable within some region

of its parameter space.

In this paper, using previous knowledge,17,18 thermal fluctuations and correla-

tions among all the hairs i.e. electric charge, horizon area and angular momentum

(magnetic charge) are calculated. These are calculated in the limit of large horizon

area.

The paper is organized as follows. In Sec. 2, detailed calculation of thermal

fluctuations and correlations are done for AdS Kerr–Newman black hole. In the

next section, same thing has been done for asymptotically AdS dyonic black holes

with electric and magnetic charge. A brief summary and outlook have been given

in the very next section. We end with an Appendix. It contains the derivations of

various results, used in the main body of the paper and necessary formulas from

Refs. 17 and 18, used in this paper.

2. Thermal Fluctuation and Correlation among Hairs of AdS

Kerr Newman Black Hole

The expectation value of fluctuation of any quantity is the standard deviation of

that quantity. It is a statistical measure of deviation for any distribution. The

knowledge of probability theory and the expression of grand canonical partition

function (A.2) together give the standard deviation of charge (Q) as,

(∆Q)2 =

∫
da dq dj q2 exp

{
−β2
[(
MAA − SAA

β

)
a2 + (MQQ)q2 + (2MAQ)aq

+ (MJJ)j2 + (2MAJ)aj + (2MQJ)qj
]}

∫
da dq dj exp

{
−β2
[(
MAA − SAA

β

)
a2 + (MQQ)q2 + (2MAQ)aq

+ (MJJ)j2 + (2MAJ)aj + (2MQJ)qj
]}

, (1)

where ∆Q is the standard deviation of black hole charge. Similarly, ∆A and ∆J

are defined for horizon area and angular momentum of the black hole.
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The correlation function between charge (Q) and angular momentum (J) is

denoted as ∆QJ and is defined as

∆QJ =

∫
da dq dj qj exp

{
−β2
[
(MAA − SAA

β )a2 + (MQQ)q2 + (2MAQ)aq

+ (MJJ)j2 + (2MAJ)aj + (2MQJ)qj
]}

∫
da dq dj exp

{
−β2
[(
MAA − SAA

β

)
a2 + (MQQ)q2 + (2MAQ)aq

+ (MJJ)j2 + (2MAJ)aj + (2MQJ)qj
]}

. (2)

Similarly, ∆QA and ∆JA are defined for the black hole.

The expressions (1), (A.2) and (A.4) together give,

(∆Q)2 = − 2

β
· 1

ZG
· ∂ZG
∂MQQ

=
1

|H|
· ∂|H|
∂(βMQQ)

, (3)

where |H| = determinant of Hessian matrix (H).

Similarly, (∆A)2, (∆J)2, ∆QA, ∆JA, ∆QJ are defined by taking partial deriva-

tives with respect to
(
MAA − SAA

β

)
, MJJ , MQA, MJA and MQJ , respectively, i.e.

(∆A)2 = − 2

β
· 1

ZG
· ∂ZG

∂(MAA − SAA

β )
=

1

|H|
· ∂|H|
∂(βMAA − SAA)

, (4)

(∆J)2 = − 2

β
· 1

ZG
· ∂ZG
∂MJJ

=
1

|H|
· ∂|H|
∂(βMJJ)

, (5)

∆QA = − 1

β
· 1

ZG
· ∂ZG
∂MQA

=
1

2|H|
· ∂|H|
∂(βMQA)

, (6)

∆JA = − 1

β
· 1

ZG
· ∂ZG
∂MJA

=
1

2|H|
· ∂|H|
∂(βMJA)

, (7)

∆QJ = − 1

β
· 1

ZG
· ∂ZG
∂MQJ

=
1

2|H|
· ∂|H|
∂(βMQJ)

. (8)

Equations (3) and (A.8) together give

(∆Q)2 =
1

|H|
· ((βMAA − SAA) · βMJJ − (βMAJ)2) , (9)

where |H| is the determinant of the Hessian matrix (H).

Similarly, Eqs. (A.8) and (4)–(8) together give, respectively,

(∆A)2 =
1

|H|
· (β2(MQQMJJ − (MJQ)2)) , (10)

(∆J)2 =
1

|H|
· ((βMAA − SAA) · βMQQ − (βMAQ)2) , (11)

∆QA =
1

|H|
· (β2(MJQMAJ −MAQMJJ)) , (12)
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∆JA =
1

|H|
· (β2(MJQMAQ −MAJMQQ)) , (13)

∆QJ =
1

|H|
· (β2MAQMAJ − βMJQ(βMAA − SAA)) . (14)

The AdS Kerr–Newman black hole is given in Boyer–Lindquist coordinates as

ds2 = −∆r

ρ2

(
dt− a sin2 θ

Σ
dφ

)2

+
∆θ sin2 θ

ρ2

(
r2 + a2

Σ
dφ− a dt

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 , (15)

where Σ = 1 − a2

l2 , ∆r = (r2 + a2)
(
1 + r2

l2

)
− 2Mr + Q2, ∆θ = 1 − a2cos2θ

l2 , ρ2 =

r2 + a2 cos2 θ, a = J
M .

The generalized Smarr formula for the AdS Kerr–Newman black hole is

given as20

M2 =
A

16π
+
π

A
(4J2 +Q4) +

Q2

2
+
J2

l2
+

A

8πl2

(
Q2 +

A

4π
+

A2

32π2l2

)
, (16)

where the cosmological constant (Λ) is defined in terms of a cosmic length parameter

as Λ = −1/l2.

As before, our interest is in astrophysical (macroscopic) charged, rotating black

holes whose horizon area is very large compared to the Planck area. In Ref. 17, it

is shown that AdS Kerr–Newman black holes are stable if A2 � (4J2 + Q4) and

A� l2. So, we can approximate (16) as follows:

M ≈ A3/2

16π3/2l2
+
A1/2

4π1/2
+
π1/2Q2

A1/2
+

8π3/2J2

A3/2
. (17)

The detailed calculation is given in Appendix A.

Equations (A.9) and (A.10) together give

(∆Q)2 ≈ 3ApA

16π2l2
. (18)

The detailed calculation is given in Appendix A.

Similarly, Eqs. (A.9) and (10)–(14) together give

(∆A)2 ≈ 8ApA , (19)

(∆J)2 ≈ 3ApA
2

128π3l2
, (20)

∆QA ≈ 4APQ , (21)

∆JA ≈ 12APJ , (22)

∆QJ ≈ 6APJQ

A
. (23)
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Of course, last six expressions are only the leading order terms in large horizon

area limit.

It is extremely interesting to note that ((∆J)2) and ((∆Q)2) are independent

of J and Q, respectively. This implies that there are finite amount of fluctuations

of charge and angular momentum even for an almost neutral, non-rotating macro-

scopic AdS black hole, i.e. AdS black hole with J,Q→ 0.

The measure of area fluctuation is given as

∆A

A
≈
√

8AP
A

. (24)

Similarly, measure of other fluctuations and correlations are given as

∆Q

Q
≈
√

3

16π2
·
√
APA

Ql
, (25)

∆J

J
≈
√

3

128π3
·
√
APA2

Jl
, (26)√

∆QA

QA
≈
√

4AP
A

, (27)

√
∆QJ

QJ
≈
√

6AP
A

, (28)

√
∆AJ

AJ
≈
√

12AP
A

. (29)

Equations (24), (27)–(29) imply that all the measure of correlations and area

fluctuations become infinitesimal for large black holes (A� AP ). This is the feature

of fluctuation around stable equilibrium point. These are interestingly independent

of charge (Q), angular momentum (J) of the black hole.

Table A.1 suggests that consideration of (17) would imply

A3/2

16π3/2l2
>
π1/2Q2

A1/2
,

A3/2

16π3/2l2
>

8π3/2J2

A3/2
. (30)

Equations (25), (26) and (30) together give

∆Q

Q
>

√
3AP
A

, (31)

∆J

J
>

√
3AP
A

. (32)

Last two expressions imply that measure of charge and angular momentum fluctu-

ations are infinitesimal for large black holes (A� AP ). Although these expressions

(31) and (32) are the lower bounds, they are independent of charge (Q) and angular

momentum (J) of the black hole and eventually are zero in large black hole limit.
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3. Thermal Fluctuation and Correlation among Hairs of

Asymptotically AdS Dyonic Black Holes with Electric and

Magnetic Charge

The four-dimensional metric for this black hole is given as21

ds2 = −f dt2 + f−1 dr2 +R2 dΩ2 , (33)

where

φ =
φ3

r3
+O(r−4) , (34)

f =
−Λr2

3
+ 1− 2M

r
+
Q2 + P 2

r2
+

Λφ2
3

5r4
+O(r−5) , (35)

R = r − 3φ2
3

20r5
+O(r−6) , (36)

φ3 =
g0

Λ

∫ ∞
rh

dr

R2
(Q2 exp(2g0φ)− P 2 exp(−2g0φ)) , (37)

where rh, Q, P are the radius of horizon, electric charge and magnetic charge of the

black hole, respectively. Λ(< 0) is the cosmological constant, g0 is diatonic coupling

constant and φ is the diatonic field.

It has been shown that18 thermal stability is possible if A� AP , l2, Q2, P 2.

In this limit, mass of this black hole is given as18

M ≈ A3/2

48l2π3/2
+
A1/2

4π1/2
+
π1/2(Q2 + P 2)

A1/2
, (38)

where Λ = −1/l2, l is the cosmic length.

Now, fluctuations and correlations among hairs of this black hole can be cal-

culated like earlier. In fact, all the formulas (3)–(14) do hold in this case with the

understanding that angular momentum (J) should be replaced by magnetic charge

(P ).

Equations (9), (38), (A.8), (A.5) and (A.6) together give

(∆Q)2 ≈ ApA

16π2l2
. (39)

Similarly, other fluctuations and correlations can be calculated and are given as

(∆A)2 ≈ 8ApA , (40)

(∆P )2 ≈ ApA

16π2l2
, (41)

∆QA ≈ 4APQ , (42)

∆PA ≈ 4APP , (43)

∆QP ≈ 2APPQ

A
. (44)
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It turns out that ((∆P )2) and ((∆Q)2) are independent of P and Q, respectively.

This implies that large asymptotically AdS dyonic black hole with vanishing electric

and magnetic charge can have finite amount of fluctuations of electric and magnetic

charge.

The measure of fluctuations and correlations are given as

∆A

A
≈
√

8AP
A

, (45)

∆Q

Q
≈ 1

4π
·
√
APA

Ql
, (46)

∆P

P
≈ 1

4π
·
√
APA

Pl
, (47)√

∆QA

QA
≈
√

4AP
A

, (48)

√
∆QJ

QJ
≈
√

2AP
A

, (49)

√
∆AP

AP
≈
√

4AP
A

. (50)

Equations (45), (48)–(50) imply that measure of area fluctuation and all the

correlations are independent of electric charge (Q), magnetic charge (P ) and they

are infinitesimal for large black holes (A� AP ).

Thermal stability of asymptotically AdS dyonic black holes with electric and

magnetic charge is possible if A � AP , l2, Q2, P 2. This condition along with

Eqs. (46) and (47) implies that

∆Q

Q
>

1

4π
·
√
AP
A

, (51)

∆P

P
>

1

4π
·
√
AP
A

. (52)

So, measure of electric and magnetic charge fluctuations are infinitesimal for large

black holes (A � AP ). Although last two expressions of (51) and (52) are the

lower bounds, they are independent of electric and magnetic charges (Q,P ) and

eventually are zero in large black hole limit.

4. Summary and Discussion

The novelty of our analysis is that it is quite independent of specific classical space-

time geometries, relying as it does on quantum aspects of spacetime. The construc-

tion of the partition function used standard formulations of equilibrium statistical

1850190-7
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mechanics augmented by results from canonical quantum gravity, with extra in-

puts regarding the behavior of the microcanonical entropy as a function of area

beyond the Bekenstein–Hawking area law, as for instance derived from Loop Quan-

tum Gravity.7 We use classical metric only as an input which gives the dependence

of mass on its charges.

In large horizon area limit, it turns out that for a quantum AdS black hole, lead-

ing order fluctuations of electric charge ((∆Q)2) and angular momentum ((∆J)2)

are independent of its charge (Q) and angular momentum (J). This implies that

even a black hole with infinitesimal charge (Q) and angular momentum (J) can have

finite fluctuations in respective quantities. Similar is the conclusion for the case of

asymptotically AdS dyonic black holes with electric and magnetic charge. The SAA
term is present everywhere in the calculation. The nonvanishing contribution of

this term is pure artifact of quantum fluctuation of spacetime. Thermal fluctua-

tions are present along with this quantum fluctuation as we are considering black

hole to be immersed in an extended thermal bath. So, thermal fluctuations and

correlations that we have calculated, take care of quantum fluctuation of spacetime

automatically. Thus, it is extremely interesting in its own merit. We choose these

examples: AdS black holes as AdS/CFT correspondence tells that string theory on

AdS space is dual to a conformal field theory (CFT) on the boundary of that AdS

space.22,23 It has also been shown using the AdS/CFT correspondence that the

asymptotically AdS black hole is dual to a strongly coupled gauge theory at finite

temperature.24–27 It is possible to study the strongly correlated condensed-matter

physics using the AdS/CFT correspondence. Holographic model of superconductors

has also been constructed from black hole solutions using the AdS/CFT correspon-

dence.28 Hence, our results of AdS black holes may have some imprints on possible

applications for the strongly correlated condensed-matters systems.

Appendix A

Consider a macroscopic black hole immersed in a heat bath, at some (inverse)

temperature β, with which it can exchange energy, charge, angular momentum and

all quantum hairs. The grand canonical partition function of a black hole with n

charges is given as18

ZG =

∫
dA

(
n∏
i=1

∫
dCi

)
exp(S(A)− β(E(A,C1 · · ·Cn)− PiCi)) , (A.1)

where following Ref. 19, the microcanonical entropy of the horizon is defined by

exp[S(A)] ≡ g(A(x),C(y1)···C(yn))
dA
dx

dC1

dy1
··· dCn

dyn

. Here, Ci is the ith charge with corresponding

potential Pi.

If we choose n = 2 with the identification C1 = Q and C2 = J , then we will

get back AdS Kerr–Newman black hole. Similarly, n = 2, with the identification

C1 = Q and C2 = P , will give back asymptotically AdS dyonic black holes with

electric and magnetic charge.
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For n = 2, the expression of grand canonical partition function would take the

form,17

ZG = exp[S(Ā)− βM(Ā, Q̄, J̄) + βΦQ̄+ βΩJ̄ ]

∫
da dq dj

× exp

{
−β

2

[(
MAA −

SAA
β

)
a2 + (MQQ)q2 + (2MAQ)aq

+ (MJJ)j2 + (2MAJ)aj + (2MQJ)qj

]}
, (A.2)

where M(Ā, Q̄, J̄) is the mass of equilibrium isolated horizon. Here, MAQ ≡
∂2M
∂A∂Q |(Ā,Q̄,J̄), etc.

The above expression (A.2) of grand canonical partition function can be ex-

panded in Taylor series around saddle point.18 The stability criteria17,18 was de-

rived from this expression, based on the Hessian matrix (H). The Hessian matrix,

for black hole with n charges, is given as18

H =


βMAA − SAA βMAC1 βMAC2 . . . βMACn

βMAC1 βMC1C1 βMC1C2 . . . βMC1Cn

βMAC2 βMC2C1 βMC2C2 . . . βMC2Cn

. . . . . . . . . . . . . . .

βMACn βMCnC1 βMCnC2 . . . βMCnCn

 , (A.3)

where β
(

= SA

MA

)
is the inverse temperature.

The Hessian matrix (H) is symmetric. So, it can be diagonalized by some or-

thogonal matrix. Therefore, if λ1, . . . , λn+1 be (n + 1) eigenvalues of H, then ZG
will be given as

ZG ∝
1√

(λ1 · λ2 · · ·λn+1)

=
1√
|H|

, (A.4)

where |H| is the determinant of the Hessian matrix (H).

Since we are considering quantum theory of gravity, we have to consider the ef-

fect of quantum spacetime fluctuations on microcanonical entropy of isolated hori-

zons. It has been shown that7 the microcanonical entropy for macroscopic isolated

horizons (S) in (3 + 1)-dimensional spacetime has the form

S = SBH −
3

2
logSBH +O(S−1

BH) , (A.5)

SBH =
A

4AP
, AP → Planck area . (A.6)

Therefore, Planck area (AP ) enters in the Hessian through temperature (= 1
β )

and, consequently, in the stability criteria.
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Table A.1. Stable points of AdS KN black hole.

Value of u
(

= A
l2

)
Value of x

u

(
=

(J/A)

(A/l2)

)
Value of y

u

(
=

(Q2/A)

(A/l2)

)
1 9.99 × 10−3 8.99 × 10−2

101 3.00 × 10−3 2.60 × 10−2

102 8.99 × 10−4 1.96 × 10−2

103 8.19 × 10−4 1.89 × 10−2

104 7.75 × 10−4 1.88 × 10−2

105 7.24 × 10−4 1.87 × 10−2

The region of parameter space for stability of AdS Kerr–Newman black hole

had been shown in Ref. 17 and a sample table is given as above.

This table shows the selected six points in the (u, x
u , y

u ) space, such that AdS

KN black hole is stable in these points. This table of course shows the maximum

possible values of x
u , y

u for a given value of “u” within the region of stability.

In Ref. 17, it is mentioned that if “l” is sufficiently large then AdS KN black hole

will behave like a KN black hole and it will be thermally unstable. We want to study

some interesting properties for thermal fluctuation of stable AdS KN black hole.

So, we have assumed that area of macroscopic black hole horizon (A) is sufficiently

larger that “l2”. In Ref. 17, it is shown that AdS Kerr–Newman black holes are

stable if A2 � (4J2 +Q4) and A� l2.

Now we can write down Eq. (16) as

M2 =
A3

256π3l4
+

A2

32π2l2
+A

(
Q2

8πl2
+

1

16π

)
+

(
Q2

2
+
J2

l2

)
+

1

A
(4πJ2 + πQ4) .

This implies that

M =
A3/2

16π3/2l2

(
1 +

8πl2

A
+

1

A2
(32π2l2Q2 + 16π2l4

)

+
1

A3
(128π3l4Q2 + 256π3J2l2) +

256π3l4

A4
(4πJ2 + πQ4)

)1/2

. (A.7)

Therefore, it is possible to approximate the last expression within the range of

stability, i.e. (A2 � (4J2 +Q4) and A� l2) as

M ≈ A3/2

16π3/2l2
+
A1/2

4π1/2
+
π1/2Q2

A1/2
+

8π3/2J2

A3/2
.

This is precisely Eq. (17).

Now, the determinant of the Hessian matrix (H) is given as

|H| = β2(βMAA − SAA)(MQQMJJ −M2
QJ)

−β3MAQ(MAQMJJ −MQJMAJ)

+β3MAJ(MAQMQJ −MQQMAJ) . (A.8)
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Thermal fluctuations and correlations among hairs of a stable quantum black hole

We are interested in leading order calculation for fluctuations and correlations of

AdS KN black hole. All the terms in the expression of this Hessian are calculable

from Eq. (17). The leading order values of various terms are given as

β ≈ 8π3/2l2

3A1/2AP
, SAA =

3

2A2
, MAA ≈

3

64π3/2l2A1/2
,

MJJ ≈
16π3/2

A3/2
, MQQ ≈

2π1/2

A1/2
,

MAJ ≈ −
24π3/2J

A5/2
, MAQ ≈ −

π1/2Q

A3/2
.

(A.9)

On calculation, it can be shown easily that β2(βMAA−SAA)(MQQMJJ−M2
AA)

is the dominating term in the expression of |H| (A.8). So, Eq. (9) implies that the

leading order value of (∆Q)2 can be written as

(∆Q)2 ≈ 1

βMQQ
. (A.10)

Therefore, we get (∆Q)2 ≈ 3ApA
16π2l2 , as given in (18).
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